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Cancer is marked by uncontrolled cell proliferation, often driven by genetic mutations, 
including alterations in the CXCL6 gene on chromosome 4q21. CXCL6 is a crucial gene 
involved in immune responses and inflammation and has been implicated in promoting 
tumor growth and metastasis when overexpressed. This study utilized various 
bioinformatics tools to investigate the pathogenicity of missense nsSNPs within the 
CXCL6 gene, identified through the NCBI-SNP database and assessed their impact on 
protein stability and structural integrity. A total of 22 nsSNPs were identified as 
potentially harmful, with mutations such as L47M, C51R, L92M, L92V, P73S, and Q104K 
demonstrating significant structural alterations. Mutation clustering was performed 
using Mutation3D, and molecular docking studies were conducted with PyRx to evaluate 
ligand interactions with both wild-type and mutant protein forms. Five of the 25 ligands 
examined displayed promising docking scores, suggesting their potential as therapeutic 
inhibitors. Additionally, the Hope algorithm provided further insights into the structural 
consequences of these mutations. This study highlights the role of CXCL6 mutations in 
cancer progression and underscores the potential of CXCL6 expression as a predictive 
biomarker across various cancer types. These findings offer a foundation for exploring 
CXCL6 as a therapeutic target, contributing to personalized approaches in cancer 
treatment. 
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1. Introduction 

Cancer is characterized by the uncontrolled growth of 
aberrant cells that can penetrate neighboring organs 
and spread to other regions of the body, a process 
referred to as metastasis (Kurma & Alix-Panabières, 
2023). Cancer is the most prevalent disease 
worldwide and is influenced by environmental agents 
categorized into chemical carcinogens, physical 

carcinogens, and individual genetic factors. Chemical 
carcinogens, including substances such as asbestos, 
cigarette smoke, aflatoxins, and arsenic, contribute 
significantly to cancer risk, as do physical carcinogens 
such as ultraviolet and ionizing radiation. In recent 
decades, cancer incidence has surged, with over 100 
million people currently affected globally. Between 
2008 and 2018, cancer mortality rose to 9.7 million, 
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underscoring its growing health impact. By 2030, it is 
projected that annual new cancer cases may reach 
23.6 million worldwide, highlighting a critical need 
for strengthened prevention and treatment 
approaches (Adhikari et al., 2024). Colon, lung, breast, 
lymph, brain, kidney, and blood cancers are among 
the most well-known forms of cancer. Early 
identification is key to successfully treating many 
forms of cancer, although other lifestyle factors raise 
the risk (Sung et al., 2021).  

Radiotherapy, surgery, and systemic medicines 
such as hormone treatments, targeted biological 
therapies, chemotherapy, and targeted immunoth-
erapies are the most popular and approved ways to 
treat cancer (Ghorbanpour et al., 2024). Mutations in 
tumor suppressor genes are a key hereditary factor in 
cancer development. These genes typically regulate 
cell division and differentiation, preventing 
uncontrolled growth (Gerke et al., 2024). Chromos-
omal translocations can lead to the formation of 
fusion genes, such as BCR-ABL in leukemia and EML4-
ALK in lung cancer, which are known to drive cancer 
progression. Additionally, epigenetic abnormalities, 
including changes in DNA methylation and histone 
modifications, can disrupt normal gene expression 
patterns, contributing to cancer development. These 
epigenetic changes, by altering regulatory 
mechanisms without changing the DNA sequence, 
underscore the complexity of gene regulation in 
cancer and present potential targets for therapeutic 
intervention (Zhang & Li, 2023).  Furthermore, 
germline mutations in BRCA1/2, TP53, and PTEN, and 
somatic mutations including PIK3CA, AKT1, CTNNB1, 
and CXCL6, can increase cancer risk (Chen et al., 
2023). Cancers of the breast, lungs, colon, leukemia, 
and other organs can acquire these genetic 
abnormalities (Mohd Abas et al., 2024).  

An increased number of single-nucleotide 
polymorphisms (SNPs) can elevate the risk of cancer, 
as certain SNPs are associated with genetic 
susceptibility to the disease. For instance, specific 
SNPs in the TP53 gene, such as rs1042522, have been 
linked to a higher probability of cancer development. 
In certain populations, mutations cause the 
production of numerous alleles, accounting for over 
99% of the variation in the human genome. The 
variant with the lowest frequency is 1% and are 
approximately 300-400 base pairs (Hoffman et al., 
2024). There are two kinds of single nucleotide 
polymorphisms: genome-encoding and non-coding. 
Coding SNPs, which can influence protein sequences, 
include both synonymous and nonsynonymous 
variants. Mutations affecting amino acids cannot be 
caused by synonymous SNPs or any other non-coding 
SNP. SNPs that do not code for genes can be 
categorized into three groups: intronic, UTR, and 
intergenic (Yang & Nam, 2020).  

In 2023, Studies found that single nucleotide polym-
orphisms (SNPs) in genes that encode inflammatory 
factors and chemokines can affect the development 
and progression of disease. Genetic variants in 
chemokine genes (CCL3, CCL4, and CXCL8) can impact 
a variety of diseases and conditions, including cancer, 
heart disease, and asthma in the bronchi (Tatarkova 
et al., 2022). Chemotactic and inducible small-
molecule peptides, or chemokines, are present 
everywhere and have a significant impact on both 
short-term and long-term inflammation. One impo-
rtant inflammatory cytokine is soluble CXCL6 C-X-C 
Motif chemokine, which binds to the receptors CXCR1 
and CXCR2 and brings inflammatory cells to the site of 
inflammation. In 2022, Komolafe and Pacurari 
discovered that CXCL6 levels are significantly elevat-
ed in individuals with idiopathic pulmonary fibrosis. 
This increase in CXCL6 may play a role in the 
progression of lung fibrosis, suggesting its potential 
as a biomarker and a possible therapeutic target in 
managing the disease (Komolafe and Pacurari, 2022). 

The CXCL6 gene, also known as SCYB6, CKA-3, and 
GCP-2, encodes a protein belonging to the CXC 
chemokine family. This family is characterized by a 
conserved C-X-C motif, where a single amino acid 
separates two cysteine residues. This motif is crucial 
for functions such as chemotaxis, angiogenesis, and 
inflammatory responses (NCBI, 2022). CXCL6 is 
crucial for immune defense, exhibiting activity against 
both Gram-positive and Gram-negative bacteria while 
attracting neutrophil granulocytes. This gene 
influences a range of physiological processes, inclu-
ding inflammation, immune response, cell prolif-
eration, metastasis, and tissue repair. Its multifaceted 
role underscores its importance in maintaining 
homeostasis and responding to pathological condi-
tions (Wuyts et al., 2003). In this study, we employed 
the non-synonymous SNPs that affect CXCL6 genetic 
structure and function, even though CXCL6 has well-
established involvement in cancer formation and 
progression. Research on deleterious SNPs in the 
CXCL6 gene, they affect protein stability and binding 
affinity, and whether or not they contribute to cancer 
formation and progression is particularly present. A 
lack of understanding in this area prevents the 
creation of efficient cancer treatments that target 
CXCL6 and its variations. 

2. Materials and Methods 

Fig. 1 shows the overall methodology of the present 
study by employing multiple computational tools. 
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Fig. 1 Overall flowchart of the present study 

 

2.1 Data collection 

To find CXCL6 missense nsSNPs, the NCBI-SNP 
database (https://www.ncbi.nlm.nih.gov/) was queri-
ed. Through the UniProt web service 
(https://www.uniprot.org/uniprotkb), the FASTA 
sequence of the CXCL6 protein (accession number: 
P80162) was retrieved. 

2.2 Screening of deleterious nsSNPs 

SNPNexus (https://www.snp-nexus.org) combines 
the PolyPhen and SIFT tools for mutation analysis 
(Waheed et al., 2024). The sorting Intolerant from 
Tolerant (SIFT) tool is employed to differentiate 
between disease-causing mutations and neutral 
polymorphisms by predicting the impact of amino 
acid substitutions on protein function. It generates a 
score ranging from 0 to 1, reflecting the likelihood 
that a novel amino acid will be tolerated at a specific 
site in the protein (Azmi et al., 2023). Polymorphism 
Phenotyping (PolyPhen) is utilized to predict the 
potential functional impacts of nsSNPs by integrating 
phylogenetic, structural, and sequence annotation 
data. Protein structure and function can be examined 

using PolyPhen-2 (http://genetics.bwh.harvard.edu-
/pph2) (Sultana et al., 2024). 

Moreover, the PredictSNP tool (https://losch-
midt.chemi.muni.cz/predictsnp) provides more 
accurate and efficient consensus predictions by 
evaluating the effects of modifications to individual 
amino acids (Mohkam et al., 2022). Hidden Markov 
Models (HMMs) and evolutionary linkages are utilized 
in the Protein Analysis Through Evolutionary 
Relationship (PANTHER) database (https://w-
ww.pantherdb.org) (Dakshitha et al., 2024). Protein 
sequence, location, amino acid substitution, and 
Homo sapiens are the inputs used for study of the 
CXCL6 gene. 

2.3 Estimation of disease-associated nsSNPs 

The SNPs & GO tool (https://snps.biofold.org/snps-
and-go/snps-and-go.html) analyzes sequence, evolu-
tion, and Gene Ontology (GO) terms to predict 
disease-associated mutations in proteins. In nsSNPs 
disease classifications, variants with a probability 
greater than 0.5 are considered. (Azmi et al., 2023). 
MetaSNP (https://snps.biofold.org/meta-snp/) uses 
results from PANTHER, PhD-SNP, SIFT, and SNAP, 
applying a random forest classifier to discriminate 
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disease-related from polymorphism nsSNVs (Panchal 
et al., 2024). Mutations with frequencies over 0.5 are 
projected to be disease-related, with MetaSNP 
reaching 79% accuracy (Waheed et al., 2024). Suspect 
(http://www.sbg.bio.ic.ac.uk/t/) estimates the phen-
otypic impact of missense mutations by integrating 
sequence, structure, and system biology features, 
scoring mutations on a scale from 0 to 100, with 50 as 
the minimum score (Sultana et al., 2024). 

2.4 Prediction of Protein Stability Change 

The CXCL6 protein's stability and functional 
characteristics were examined with the use of i-Stable 
(http://predictor.nchu.edu.tw/iStable/), a program 
that determines how different amino acid changes 
affect protein stability (Akhtar et al., 2020). By 
entering each substitution and protein sequence, 
variants were examined. Because disease-causing 
mutations can impair protein structure and function, 
MUpro (http://mupro.proteomics.ics.uci.edu/) was 
utilized to forecast the impact of mutations on protein 
stability. The SVM approach analyzes the protein 
sequence and structural features, which are 
represented by ΔΔG values, to forecast changes in 
protein stability caused by mutations in a single 
amino acid (Laskar et al., 2023). We provided the 
locations of wild and mutant residues after verifying 
the CXCL6 protein sequence. Applying three-
dimensional models of both wild-type and mutant 
CXCL6 proteins as input, the integrated computational 
tool DUET (http://bleoberis.bioc.cam.ac.uk/duet/) 
was utilized to assess the effect of nonsynonymous 
mutations on protein stability (Aljindan et al., 2021). 

2.5 Predicting mutation clusters 

The clustering of amino acid replacements was 
evaluated using Mutation3D (http://www.mutatio-
n3d.org/about.shtml/), which identifies locations 
where mutations could have a major impact on 
protein function (Yasmin, 2022). We utilized 
homology modeling, which is extensively employed in 
pharmaceutical research and discovery due to its 
efficacy in predicting protein structure and function, 
to forecast the three-dimensional structure of the 
CXCL6 protein as an experimental structure was not 
available (Harihar et al., 2024).To create three-
dimensional models of wild-type and mutant CXCL6 
proteins, we used the SWISS-MODEL server 
(https://swissmodel.expasy.org/) (Banerjee et al., 
2022). Based on the sequence of amino acids, the 
server can automatically anticipate the protein's 
three-dimensional structure. Finding structural 
templates, aligning the desired sequence with these 
templates, building the model, and evaluating its 
quality are all steps in the process (Kumar et al., 
2024). 

2.6 Structural validation and refinement 

We used the GalaxyRefine server (https://galax-
y.seoklab.org/cgi-bin/submit.cgi?type=REFINE/), wh-
ich passed major evaluations for predicting protein 
structures, to modify the models. Molecular dynamics 
simulations were used for structural refinement 
(Rehman et al., 2024). To determine the best strategy 
for prediction, the updated models were tested using 
different validation tools. For more information about 
Qualitative Model Energy Analysis (QMEAN), visit 
(https://swissmodel.expasy.org/qmean/help/) (Kha-
mlich et al., 2023). The clustering algorithm's z-score 
determines the reliability of the model. The SAVES 
Structure Validation Server, accessible at 
(https://saves.mbi.ucla.edu/), was utilized to 
evaluate structural flaws and the z-score of the 
chosen model to validate the 3D protein models 
(Azmi et al., 2023). The ERRAT program examined the 
nonbonded interactions between different atomic 
residues (Khamlich et al., 2023), while PROCHECK 
assessed the stereochemical features of the homology 
models (Goswami et al., 2024), such as the 
Ramachandran plot and dihedral angles (φ and ψ) for 
potential amino acid configurations (An et al., 2023). 
To validate the model, a minimum of 65% of the 
amino acids must have a score higher than 0.2 (Arega 
et al., 2024). We also used the Verify 3D application to 
make sure the amino acid sequence was compatible 
with the 3D structure of the protein. 

2.7 Structural Comparison Analysis 

To assess the updated model, we superimposed 
protein structures using the TM-align tool (http-
s://zhanglab.dcmb.med.umich.edu/TM-align/) to find 
structural similarities. This program calculates the 
root mean square deviation (RMSD) and the template 
modeling score (TM score) (Rozario et al., 2021). 

2.8 Predicting the phenotypic effects of the nsSNPs 

We analyzed the structural and functional implic-
ations of point mutations using the HOPE server, 
which can be available at (https://www3.cmbi.u-
mcn.nl/hope/). As a result of each mutation, this the 
most advanced automated program produces a report 
that describes the protein's altered size, charge, 
bonding pattern, and interactions with other 
molecules (Yasmin, 2022). 

2.9 Ligand preparation 

From the PubChem database (https://pubchem.ncb-
i.nlm.nih.gov/compound/), we obtained the three-
dimensional chemical blueprints of chosen comp-
ounds. Afterwards, we decreased ligand energies and 
optimized their 3D geometry using specialized 
algorithms (Shah et al., 2020). We changed the ligands 
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from SDF to PDB after downloading them so we could 
use them in future docking investigations. 

2.10 Pyrx Autodock Vina 

Molecular docking plays a crucial role in the fields of 
drug discovery and biomolecular interaction research. 
Finding a new drug candidates and learning how they 
bind to targets are both made easier with its help. 
Docking technology has recently advanced by 
facilitating studies in biomolecular interactions and 
structure-based drug design (Chen et al., 2020). We 
docked the chosen ligands with CXCL6 using the PyRx 
program (https://pyrx.sourceforge.io/), which is part 
of the Lamarckian genetic algorithm (LGA) that allows 
for virtual ligand screening with AutoDock and 
Autodock Vina (Ni et al., 2024). The five most 
significant values for each ligand were determined by 
altering the grid center size (XYZ axis) (Huang et al., 
2024). 

2.11 PLIP Visualization Interaction 

Discover and visualize protein-ligand interaction 
patterns in 3D structures using the Protein Data Bank 
(PDB) or user-uploaded data with the help of the 

Protein-Ligand Interaction Profiler (PLIP), a free 
program attainable at (projects.biotec.tu-
dresden.de/plip-web/) (Adasme et al., 2021). In 
addition to creating XML and text files, each binding 
site also generates 3D interaction diagrams that may 
be analyzed live using JSmol or offline with PyMOL 
(Kantelis et al., 2022). You may find several kinds of 
interactions, like hydrogen bonds, hydrophobic 
contacts, π-stacking, π-cation interactions, salt 
bridges, water bridges, metal complexes, and halogen 
bonds, with this tool (Adasme et al., 2021). 

3. Results 

3.1 Retrieval of the nsSNP dataset 

The NCBI-SNP database was used to extract the 
nsSNPs of the CXCL6 gene.  Fig. 2 displays the total 
number of SNPs, which was 22,83. Fig. 2 displays that 
of the 2283 nsSNPs, 117 are synonymous, 250 are 
missense or non-synonymous, 632 are coding, 437 
are non-coding, 636 are intronic, 66 are exonic, 410 
are in the UTR, 284 are in the 3' UTR, 126 are in the 5' 
UTR, 427 are in the 3' downstream, and 377 are in the 
5' upstream.  

 
Fig. 2 Distribution of nsSNPs and banding location mapped on human chromosome in CXCL6   gene 

 
We chose missense nsSNPs for further study because 
a change in the coding sequence could alter the 
protein sequence, modifying the protein structure and 
increasing the risk of many disorders. Though some 
missense substitutions do alter protein structure and 
function, others are neutral or have no effect at all. It 
is therefore critical to distinguish between harmful 
SNPs and neutral ones. We obtained the sequence of 
protein P80162 for  this investigation from  the  UniProt  

 
database. Moreover, 114 amino acids make up the 
CXCL6 gene in humans. It is situated on chromosome 
4. Granulocyte chemotactic protein 2 (GCP-2) and 
small-inducible cytokine B6 (SCYB6) are alternative 
names for the CXCL6 gene. 
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3.2 Deleterious SNP prediction by SIFT and 

Polyphen 

The SIFT predicts a list of nsSNPs based on sequence 
homology and amino acid physical properties. Using 
the tolerance index (TI), which is inversely related to 
the functional impact of amino acid substitutions, 
SNPnexus identified 234 deleterious substitutions 
among 2,283 nsSNPs predicted by SIFT. PolyPhen 
analysis indicated that out of the assessed nsSNPs, 53 
were predicted to be likely harmful, 38 potentially 

harmful, and 120 benign. A comparative evaluation of 
the findings from SIFT and PolyPhen revealed an 
overlap of 22 nsSNPs, which were classified as 
harmful or likely harmful, highlighting the 
significance of these genetic variations. Additionally, 
the PANTHER analysis identified 22 common nsSNPs, 
as summarized in Table 1. This convergence of results 
across multiple analytical methods underscores the 
potential impact of these nsSNPs on protein function 
and disease risk. 
 

 
Table 1 Prediction of Effects and consequences of SNPs by using bioinformatics tools 

Variation ID AA 
SIFT Polyphen PANTHER Polyphen2 Predict SNP SuSpect 

Score Effect Score Effect Score Effect Score Effect Effect Score Effect 
rs752824015 M1V 0 D 0.935 PD 0.57 PD 0.993 PD D 8 N 
rs1403759603 M1I 0 D 0.956 PD 0.57 PD 0.993 PD D 7 N 
rs367612330 L47M 0 D 0.999 PD 0.57 PD 1 PD D 32 D 
rs565771057 R48C 0 D 0.999 PD 0.57 PD 1 PD D 44 D 
rs1373342928 R48H 0 D 0.999 PD 0.57 PD 1 PD D 33 D 
rs1191410166 C51R 0 D 0.999 PD 0.57 PD 1 PD D 99 D 
rs757247423 C51Y 0 D 0.999 PD 0.57 PD 1 PD D 97 D 
rs4608774 G72S 0 D 1 PD 0.57 PD 1 PD D 12 N 
rs896104907 P73L 0 D 0.999 PD 0.57 PD 1 PD D 25 D 
rs1213029852 C75G 0 D 0.998 PD 0.57 PD 1 PD D 95 D 
rs762611604 V78M 0 D 0.989 PD 0.19 PB 0.999 PD D 41 D 
rs140549348 L92M 0 D 0.998 PD 0.57 PD 1 PD D 61 D 
rs140549348 L92V 0 D 0.998 PD 0.57 PD 0.999 PD D 51 D 
rs975429889 P94L 0 D 0.999 PD 0.57 PD 1 PD D 66 D 
rs1239375597 P97T 0 D 0.984 PD 0.57 PD 1 PD D 18 D 
rs1471923911 P97R 0 D 0.986 PD 0.57 PD 0.999 PD D 13 N 
rs146538128 K101N 0.01 D 0.979 PD 0.5 PD 0.999 PD D 38 D 
rs771400203 P73S 0.02 D 0.999 PD 0.57 PD 1 PD D 11 N 
rs774289824 A37T 0.03 D 0.992 PD 0.19 PB 1 PD D 20 D 
rs1218826120 P39S 0.04 D 0.998 PD 0.19 PB 1 PD N 22 D 
rs768861968 Q104K 0.04 D 0.987 PD 0.19 PB 0.997 PD N 13 N 
rs774289824 A37S 0.05 D 0.992 PD 0.19 PB 0.997 PD N 17 D 
*D = Deleterious, PD* = Probably damaging, PB* = Probably benign, in Suspect D*= Disease, N*= Neutral

 
3.3 Prediction of functional impact of mutation 

Table 1 illustrates that among the 22 nsSNPs 
analyzed, 17 were predicted to be certainly detrime-
ntal. Conversely, several nsSNPs were classified as 
probably benign, including V78M (0.999), A37T (1), 
P39S (1), Q104K (0.997), and A37S (0.997). The 
PolyPhen-2 service employs protein sequences, 
phylogenetic trees, and structural characteristics to 
differentiate the effects of amino acid substitutions. 
Notably, according to Table 1, PolyPhen-2 indicated 
that all 22 nsSNPs were likely harmful, reinforcing the 
potential significance of these variants concerning 
protein function and disease susceptibility. The 
Predict SNP revealed that P39S (rs1218826120), 
Q104K (rs768861968), and A37S (rs774289824) 
were found to be neutral, and M1V (rs7528244015), 
M1I(rs1403759603), L47M (RS367612330), R48C 
(rs565771057), R48H (rs1373342928), C51R 
(rs1191410166), C51Y (rs757247423), G72S 
(rs4608774), P73L (rs896104907), C75G 
(rs1213029852), V78M (rs762611604), L92M 
(rs140549348), L92V (rs140549348), P94L 
(rs975429889), P97T (rs1239375597), P97R  

 
(rs1471923911), K101N (rs146538128), P73S 
(rs771400203), A37T (rs774289824) were found to 
be deleterious effect as shown in Table 1.  

3.4 Estimation of disease-associated nsSNPs 

According to SNP&Go, R48C (rs565771057), R48H 
(rs1373342928), C51R (rs1191410166), C51Y 
(rs757247423), G72S (rs4608774), C75G 
(rs1213029852), L92V (rs140549348), P94L 
(rs975429889), and P97R (rs1471923911) were 
associated with diseases remaining 14 variants such 
as MIV (rs7528244015), M1I (rs1403759603), L47M 
(RS367612330), P73L (rs896104907), V78M 
(rs762611604), L92M (rs140549348), P97T 
(rs1239375597), K101N (rs146538128), P73S 
(rs771400203), A37T (rs774289824), P39S 
(rs1218826120), Q104K (rs768861968) and A37S 
(rs774289824) were neutral as shown in Table 2. 
Morever, in MetaSNP, 10 nsSNPs such as MIV 
(rs7528244015), M1I (rs1403759603), V78M 
(rs762611604), L92V (rs140549348), K101N 
(rs146538128), P73S (rs771400203), A37T 
(rs774289824), P39S (rs1218826120), and Q104K 
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(rs768861968) were predicted as neutral, and 12 
nsSNPs including L47M (RS367612330), R48C 
(rs565771057), R48H (rs1373342928),C51R 
(rs1191410166), C51Y (rs757247423), G72S 
(rs4608774), P73L (rs896104907), C75G 

(rs1213029852), L92M (rs140549348), P94L 
(rs975429889), P97T (rs1239375597), and P97R 
(rs1471923911) were disease causing as shown in 
Table 2. 
 

 

Table 2 Prediction of disease-associated nsSNPs and Protein stability prediction 

Variation ID Mutation 
SNP & Go Meta SNP I Stable Mu- Pro DUET 

Score Effect Score Effect Stability Score Stability Score Stability Score 
rs752824015 M1V 9 N 7 N Increase 0.51605 Decrease -0.2513237 DS -0.071 
rs1403759603 M1I 8 N 6 N Decrease 0.759847 Decrease -0.055192 DS -0.086 
rs367612330 L47M 3 N 3 D Decrease 0.689869 Decrease -1.0733077 DS -0.226 
rs565771057 R48C 3 D 4 D Decrease 0.663238 Decrease -0.2265095 DS -0.106 
rs1373342928 R48H 3 D 3 D Decrease 0.602831 Decrease -0.7868968 DS -0.501 
rs1191410166 C51R 6 D 9 D Decrease 0.527775 Decrease -1.1259131 S 0.3 
rs757247423 C51Y 6 D 9 D Decrease 0.533731 Decrease -0.7310219 DS -0.601 
rs4608774 G72S 3 D 1 D Decrease 0.75212 Decrease -0.71767034 DS -0.249 
rs896104907 P73L 2 N 2 D Increase 0.588488 Decrease -1.562131 S 0.238 
rs1213029852 C75G 4 D 8 D Decrease 0.785371 Decrease -1.562131 DS -0.92 
rs762611604 V78M 6 N 2 N Decrease 0.817122 Decrease -1.1247352 DS -0.449 
rs140549348 L92M 1 N 0 D Decrease 0.830624 Decrease -1.1321535 DS -1.34 
rs140549348 L92V 1 D 1 N Decrease 0.857348 Decrease -1.1321535 DS -1.87 
rs975429889 P94L 1 D 1 D Increase 0.515991 Increase 0.33773694 S 0.065 
rs1239375597 P97T 0 N 2 D Decrease 0.785386 Decrease -1.264408 DS -0.243 
rs1471923911 P97R 1 D 1 D Decrease 0.74334 Decrease -1.0604488 S 0.332 
rs146538128 K101N 2 N 2 N Increase 0.644964 Decrease -0.0503005 DS -0.069 
rs771400203 P73S 3 N 2 N Decrease 0.776627 Decrease -0.4147564 DS -0.089 
rs774289824 A37T 5 N 6 N Decrease 0.770042 Decrease -0.67437669 DS -0.579 
rs1218826120 P39S 3 N 7 N Decrease 0.795753 Decrease -0.8979973 DS -0.429 
rs768861968 Q104K 5 N 7 N Decrease 0.709301 Decrease -1.2778399 S 0.209 
rs774289824 A37S 6 N 7 N Increase 0.620896 Decrease -0.6154484 DS -0.613 
*N= Neutral, *D = Disease. In DUET *DS= Destabilizing, *S= Stability 

 
To forecast the phenotypic impact of a non-
synonymous alteration, suspects were utilized. 
Expected scores ranged from 0 to 100, with different 
colors denoting different degrees of deleterious. At 
the neutral end of the spectrum, it was blue, and at 
the disease-causing end, it was red. In prediction, the 
9 nsSNPs MIV (rs7528244015), M1I (rs1403759603), 
G72S (rs4608774), P97T (rs1239375597), and P97R 
(rs1471923911), P73S (rs771400203), A37T 
(rs774289824), Q104K (rs768861968), and A37S 
(rs774289824) were considered to be neutral effects 
of nsSNPs, and the remaining 13 nsSNPs L47M 
(RS367612330), R48C (rs565771057), R48H 
(rs1373342928), C51R (rs1191410166), C51Y 
(rs757247423), P73L (rs896104907), C75G 
(rs1213029852), V78M (rs762611604), L92M 
(rs140549348), L92V (rs140549348), P94L 
(rs975429889), K101N (rs146538128), P39S 
(rs1218826120) were identified as disease-causing 
nsSNPs as shown in Table 2.  

3.5 Analysis of Protein Stability 

Our results found i-Stable identified 5 mutations, 
including MIV (rs7528244015), P73L (rs896104907), 
P94L (rs975429889), K101N (rs146538128), and 
A37S (rs774289824), that were expected to increase 
the stability of the mutant protein, whereas the 
remaining 17 nsSNPs (M1I (rs1403759603), L47M 
(RS367612330),     R48C     (rs565771057),     R48H  

 
(rs1373342928), C51R (rs1191410166), C51Y 
(rs757247423), G72S (rs4608774), C75G 
(rs1213029852), V78M (rs762611604), L92M 
(rs140549348), L92V (rs140549348), P97T 
(rs1239375597), P97R (rs1471923911), P73S 
(rs771400203), A37T (rs774289824), P39S 
(rs1218826120), Q104K (rs768861968), and  
(rs774289824) were predicted to decrease the 
stability of the protein, hence lowering protein 
activity. 

Protein stability changes can be assessed by the 
MUpro server using sequence-related information or 
a combination of sequence and tertiary structure data. 
In this analysis, 21 nsSNPs MIV (rs7528244015), M1I 
(rs1403759603), G72S (rs4608774), P97T 
(rs1239375597), and P97R (rs1471923911), P73S 
(rs771400203), A37T (rs774289824), Q104K 
(rs768861968), A37S (rs774289824), L47M 
(RS367612330), R48C (rs565771057), R48H 
(rs1373342928), C51R (rs1191410166), C51Y 
(rs757247423), P73L (rs896104907), C75G 
(rs1213029852), V78M (rs762611604), L92M 
(rs140549348), L92V (rs140549348), K101N 
(rs146538128), P39S (rs1218826120) were found 
with decreased stability, and 1 nsSNPs P94L 
(rs975429889) were found with increased stability as 
shown in Table 2. 

While the DUET server predicted 17 nsSNPs M1I 
(rs1403759603), MIV (rs7528244015), L47M 
(RS367612330), R48C (rs565771057), R48H 
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(rs1373342928), C51Y (rs757247423), G72S 
(rs4608774), C75G (rs1213029852), V78M 
(rs762611604), L92M (rs140549348), L92V 
(rs140549348), P97T (rs1239375597), A37S 
(rs774289824), K101N (rs146538128), P73S 
(rs771400203), A37T (rs774289824) , P39S 
(rs1218826120) as destabilizing and 5 nsSNPs C51R 
(rs1191410166), P73L (rs896104907), P94L 
(rs975429889), P97R (rs1471923911), Q104K 
(rs768861968) as stabilizing as shown in Table 2. 

3.6 Predicting Mutation Clusters 

The mutation 3D web server was used to study the 
CXCL6 protein. With all 22 nsSNPs provided as input, 
a mutation involving amino acid residues at locations 
MIV and M1I was uncovered mutations. According to 
Table 3, a cluster of mutations L47M, R48H, R48C, 
G72S, P73L, C75G, P73S, A37T, P39S, and A37S. 
Another set of covered mutations included C51R, 
C51Y, V78M, L92M, L92V, P94L, P97T, P97R, K101N, 
and Q104K. 
 

Table 3 Functional prediction and visualization of CXCL6 gene by mutation 3D 
Variation ID Mutation Prediction Variation ID Mutation Prediction 

rs752824015 M1V Uncovered mutation rs1213029852 C75G Clustered mutation 
rs1403759603 M1I Uncovered mutation rs762611604 V78M Covered mutation 
rs367612330 L47M Clustered mutation rs140549348 L92M Covered mutation 
rs565771057 R48C Clustered mutation rs140549348 L92V Covered mutation 
rs1373342928 R48H Clustered mutation rs975429889 P94L Covered mutation 
rs1191410166 C51R Covered mutation rs1239375597 P97T Covered mutation 
rs757247423 C51Y Covered mutation rs1471923911 P97R Covered mutation 
rs4608774 G72S Clustered mutation rs146538128 K101N Covered mutation 
rs896104907 P73L Clustered mutation rs771400203 P73S Clustered mutation 
rs768861968 Q104K Covered mutation rs774289824 A37T Clustered mutation 
rs774289824 A37S Clustered mutation rs1218826120 P39S Clustered mutation 

 

3.7 SWISS Modeling for the CXCL6 Protein 

We studied 22 highly conserved CXCL6 mutations 
according to the prediction score to identify the 
changes in protein structure these mutations caused. 
Below is a list of the 22 nsSNPs that have been 
identified: L47M, R48C, R48H, C51R, C51Y, C51Y, 
G72S, P73L, C75G, V78M, L92M, L92V, P94L, P97T, 
P97R, K101N, P73S, P39S, Q104K, and A37S. The 
produced sequences were chosen for comparative 
homology modeling based on their identity and 
similarity levels, which must be greater than 30%. We 
have obtained fifty templates with the STML ID 
P80162 and the query sequence must be identified. 
Using the query sequence as a basis, we constructed a 
three-dimensional model of the CXCL6 protein using 
the Alphafold DB model of AF-P80162-F1 (Organism: 
Homo sapiens) and the template PDB ID P80162.1 
(range: 1-114 aa; coverage: 1.00). Fig. 3 displays the 
outcomes of creating a mutant model using a template 
(P80162.1.A) and PyMoL that shows the visual 
representation of the results obtained from a 
template using model 05, which was improved using 
Galaxy Refine. When estimating the model's quality 
using QMEAN, a QMEAN Z-score of -3.10 was 
produced for experimental structures of comparable 
sizes. Protein structural instability is indicated by a 
negative QMEAN Z-score. Fig. 3 shows the P80162.1.A 
model as a red star. The full model of the desired gene 
is not reported in PDB. 

We modified the proteins mentioned above using 
PyMol after downloading their corresponding PDB 
files. Table 4 shows that the mutants known as L47M, 
C51R, L92M, L92V, P73S, and Q104K have significant 
RMSD values. We validated the modeled framework 

using SAVES and examined the secondary structure 
using RAMACHANDRAN plot evaluation. The vast 
majority of the CXCL6 protein's amino acid residues 
(82.6%) were located in an extremely favorable 
location on a RAMACHANDRAN plot, as seen in Fig. 3. 
For a full rundown of all the expected outcomes, see 
Table 4. Fig. 3 displays the ERRAT-identified 
projected model's total quality, which is 87.9518%. 

3.8 Effect of polymorphism by HOPE analysis 

HOPE program is used to analyze the difference 
between wild-type and mutant amino acids by 
evaluating their size, charge, hydrophobicity value, 
conserved location, and how different amino acid 
residues affect the domain. There is a larger effect of 
variation at rs367612330 (L47M) compared to the 
wild-type residue. The wild type is extremely 
preserved, and this might cause bumps. Because the 
mutant residue is positioned inside a particular 
domain, changing it may cause the domain to no 
longer operate as intended. In the case of 
rs1191410166 (C51R), This makes the mutant 
residue smaller and less hydrophobic than the wild-
type one. Furthermore, the mutant residue has a 
positive charge, whereas the wild-type residue has no 
charge at all. Damage to the protein is probably 
inevitable due to this mutation. The mutant residue at 
rs757247423 (C51Y) is bigger and less hydrophobic 
than the wild-type residue. This mutation is likely 
harmful to the protein because hydrophobic 
interactions are lost. The mutant residue at 
rs1213029852 (C75G) is less hydrophobic and 
smaller than the wild-type residue. Damage to the 
protein is probably inevitable due to this mutation. At 
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residue rs1239375597, P97T is relatively well 
conserved and, compared with the mutant residue, it 
shows higher hydrophobicity. According to the 

conservation scores reported in Supplementary 
Table S1, it seems likely that this mutation is 
detrimental to the protein. 

 

 
Fig. 3 Structural modeling and Validation (a) Structure of CXCL6 (b) QMEAN (c) Procheck-RAMACHANDRAN plot (d) 

ERRAT of the native CXCL6 predicted Model 
 

Table 4 Structural validation and comparison by using online tools 

Protein 
ERRAT Procheck Verify TM Align 
Score Core Allow Generously Disallowed Score Tm Score RMSD 

P80162.1.A 87.9518 82.60% 16.30% 1.10% 0.00% 19.30% 
  

M1V 88.4615 82.60% 16.30% 1.10% 0.00% 19.30% 0.97767 0.62 
M1I 96.2501 82.60% 16.30% 1.10% 0.00% 19.30% 0.9773 0.63 

L47M 94.1176 82.60% 16.30% 1.10% 0.00% 19.30% 0.97491 0.66 
R48C 96.3415 82.60% 16.30% 1.10% 0.00% 19.30% 0.97771 0.62 
R48H 84.0909 82.60% 16.30% 1.10% 0.00% 19.30% 0.97673 0.63 
C51R 87.8049 82.60% 16.30% 1.10% 0.00% 21.93% 0.97367 0.68 
C51Y 92.9412 82.60% 16.30% 1.10% 0.00% 19.30% 0.97818 0.61 
G72S 98.7654 81.70% 17.20% 1.10% 0.00% 19.30% 0.97667 0.63 
P73L 93.75 82.80% 16.10% 1.10% 0.00% 19.30% 0.97772 0.62 
C75G 94.8718 82.40% 16.50% 1.10% 0.00% 29.82% 0.978 0.62 
V78M 97.2222 82.60% 16.30% 1.10% 0.00% 19.30% 0.97931 0.6 
L92M 90.5882 82.60% 16.30% 1.10% 0.00% 19.30% 0.97478 0.66 
L92V 91.4634 82.60% 16.30% 1.10% 0.00% 16.67% 0.97478 0.66 
P94L 86.8421 82.80% 16.10% 1.10% 0.00% 3.51% 0.976 0.64 
P97T 94.5205 82.80% 16.10% 1.10% 0.00% 19.30% 0.97801 0.62 
P97R 91.5663 82.80% 16.10% 1.10% 0.00% 7.02% 0.97618 0.65 

K101N 97.4026 82.60% 16.30% 1.10% 0.00% 19.30% 0.97811 0.61 
P73S 95.7143 82.80% 16.10% 1.10% 0.00% 19.30% 0.97543 0.66 
A37T 90.9091 82.60% 16.30% 1.10% 0.00% 19.30% 0.97555 0.65 
P39S 90.4635 81.70% 17.20% 1.10% 0.00% 19.30% 0.97901 0.6 

Q104K 97.5 82.60% 16.30% 1.10% 0.00% 19.30% 0.975 0.66 
A37S 87.3418 82.60% 16.30% 1.10% 0.00% 19.30% 0.97838 0.61 

 
3.9 Molecular Docking by PyRx 

We employed the PyRx tool to investigate ligand-
protein interactions via molecular docking, docking 
all selected ligands with CXCL6. Each ligand was 
modeled with 10 distinct conformations, with a bind-

ing affinity (-Kcal/mol) serving as the defining metric. 
Supplementary Table S2 lists the binding affinities of 
five out of the 22 compounds analyzed, demon-
strating a correlation between these affinities and the 
activity levels of the ligands. To further examine their 
interactions, we docked five compounds with signific-
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ant binding affinities IND24, amphotericin, lectin, 
pyranomentoflavone, and laminin against all six of 
our normal and mutant protein complexes. Notably, 
all selected ligands exhibited binding free energies 
greater than -4 Kcal/mol, indicating favorable 
interactions. 

The CXCL6 protein displayed the highest binding 
energy after docking with amphotericin. Among the 
several ligand-binding affinities, amphotericin and 
lectin exhibit the highest, at -8.5 and -7.9 Kcal/mol, 
respectively. For a comprehensive analysis of the 
protein's structural properties, we employed PLIP 
(Protein-Ligand Interaction Profiler), as illustrated in 
Fig. 4. The findings from PLIP were subsequently 

visualized using Discovery Studio, allowing for 
detailed insights into the interactions and structural 
characteristics of the protein. Amphotericin B, an 
antifungal medication, interacts with the cancer cell 
surface protein CXCL6 to influence gene expression 
and cellular processes, ultimately leading to the 
treatment of cancer. Studies have demonstrated that 
amphotericin B can induce angiogenesis in oxidative 
stress-sensitive hepatocellular carcinoma cells by 
upregulating angiogenic genes (Hayashi et al., 2023). 
Cancer and immune-related illnesses can be 
influenced by lectins and CXCL6 (Faysal Ahmed et al., 
2023). 

 
Fig. 4 Protein-ligand binding energy structure of protein 

 
A study conducted by (Gupta, 2020) revealed that A 
potential strategy for gene therapy targeting cancer 
cells involves the use of lectins, which can bind 
selectively to carbohydrates found on the surfaces of 
cancer cells. The molecular pathways uncovered by 
docking interactions between lectins and the CXCL6 
gene could potentially lead to the development of 
targeted therapeutics for cancer and immune-related 
disorders. The lectin molecule interacted with the 
wild-type CXCL6 protein, as shown in Table 5. 
Pyranomentoflavone and the other synthesized 
pyrano[3,2-c]pyranones demonstrated potent growth 
inhibitory effects on the MCF-7 breast cancer cells 
(Burns & Helsby, 2023). In a selective method, To 
determine which cytochrome P450 enzymes impede 
the conversion of procarcinogens to carcinogenic 
metabolites, researchers have examined pyranom-
entoflavone and other flavone derivatives (Sak, 2021; 
Khodair et al., 2023). These studies suggest that 
pyranomentoflavone   is  a   promising   candidate  for  

 
cancer treatment due to its molecular interactions 
with DNA-topoisomerase complexes and its selective 
growth inhibitory effects on cancer cells. Table 5 
presents the docking contacts between the 
pyranomentoflavone molecule and the wild-type 
CXCL6 protein, highlighting the specific interactions 
that may contribute to its therapeutic potential. 

The interaction between laminin and several 
genes and signaling pathways is critical to the 
development of cancer. According to research 
(Rousselle & Scoazec, 2020), laminin-332 in partic-
ular interacts with integrin receptors to facilitate the 
migration and invasion of malignant cells. Also, 
(Wattanathavorn et al., 2024) say that circRNA 
circ_0006089 is very important in gastric cancer 
because it encourages cancer cells to behave in a not 
good way through the miR-515-5p/CXCL6 axis. A 
complex web of molecular processes facilitates the 
formation and progression of cancer, as illustrated by 
the interaction between circ_0006089 and CXCL6. 
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Finding out how laminin is connected to genes like 
CXCL6 is important for creating new cancer 
treatments because it leads to possible therapeutic 
targets (Q. Zhu et al., 2012). Table 5 displays the 
docking interaction between the laminin molecule 
and the wild-type CXCL6 protein. 

Docking batrachotoxin with cancer-related 
proteins can offer valuable insights into cancer 
channelopathies and potential treatment options 
(Sahayarayan et al., 2021). This study will examine 
how the toxin interacts with voltage-gated channels. 
Table 5 displays the docking interaction between the 
batrachotoxin molecule and the wild-type CXCL6 
protein. Docking experiments showed that the IND24 
ligand interacted with the CXCL6 gene, which may 
indicate a binding site on the gene. Since CXCL6 is an 
important chemokine in cancer cell migration and 
invasion, this interaction might be critical in 
regulating these activities. In 2021 Ghosh et al. (2021) 
further investigation into the IND24-CXCL6 
connection and its possible implications for cancer 
therapy is required. According to Table 5, the IND24 
chemical bound to the CXCL6 protein in its wild-type 
form interactions. 
 

Table 5 Protein ligand interactions with wild-type CXCL6 gene 
Ligands Interactions 

Amphotericin 
Lys77,ser76,Glu79,Val80,Val78, 
Val68,Gln67,Ala71 

Lectin 
Arg53,Leu52,Cys51,Lys77, Glu79,Val78,Val80, 
Val68, Gln67, Pro70, Phe69, Ala71 

Pyranomentofl
avone 

Val90, Cys91, Cys51, Ala82,IIe63, Lys65,Leu66, 
Gln67, Val68, Phe69,Val78, 
Pro94,Glu79,Leu92,Leu52 

Batrachotoxin 
Lys88,Gln89, Val90, Cys91, Leu92, Glu79, Lys77, 
Val80, Val81, Leu84, IIe63, Lys65, Leu66, Pro70, 
Ala71, Lys77, Glu79 

Laminin Val68, Val78, Lys77, Ser76, Ala71 

IND24 
Lys88, Val90, Cys91, Gln89, Leu84, Ala82, Val81, 
Val80, Glu79, Lys77, Val78, Ala71, Pro70, Val68, 
Gln67, Leu66, Lys65 

4. Discussion 

The chemokine CXCL6, encoded by the CXCL6 gene, is 
crucial for regulating the immune response and has 
been associated with various cancers. A 2014 
research study by Aldinucci and Colombatti found 
that CXCL6, also known as granulocyte chemotactic 
protein-2 (GCP-2), draws immune cells such as 
neutrophils to regions surrounding tumors. This 
chemokine influences the formation of new blood 
vessels, the growth of tumors, metastasis, or the 
spread of cancer (Aldinucci & Colombatti, 2014). In 
several cancers, increased CXCL6 expression is 
associated with tumor growth and poor prognosis 
(Do et al., 2020). Gaining a deep understanding of 
CXCL6’s role in cancer is crucial for developing 
targeted treatments to inhibit its activity, thereby 
reducing tumor growth and metastasis. Research has 
linked several single nucleotide polymorphisms 

(SNPs) to various cancers, including breast, colon, 
ovarian, and lung cancers. Sameer and Nissar (2021) 
report that there are several significant SNPs 
associated with these conditions. Multiple SNPs and 
other alterations have been associated with the CXCL6 
gene in recent years. However, most of the SNPs in 
this region are still unknown. Our research set out to 
fill this void (Sameer and Nissar, 2021). 

We have taken into account all known CXCL6 
SNPs in this analysis. Due to the possibility of 
insufficient results from a single bioinformatics tool, 
we selected twelve reliable prediction methods for 
identifying harmful missense SNPs. Finding the most 
detrimental nsSNPs in the CXCL6 gene was facilitated 
by employing a combined illustration of such variants. 
This was created by combining multiple computer 
programs: SIFT, Polyphen, Polyphen2, Predict SNP, 
MutPred2, SNP &Go, Meta SNP, Suspect, i Stable, Mu-
Pro, and DUET. The CXCL6 gene has 22 nsSNPs that 
have been found to have adverse, uncertain, or 
disease-causing consequences, according to 
functional studies. Based on their predictions, SNP & 
Go found that nine nsSNPs were associated with 
disease-causing SNPs, nine nsSNPs were linked to 
Meta SNP 10, and thirteen nsSNPs were linked to 
Suspect 13. DUET server, Mu Pro, and i-stable allowed 
us to predict how these 22 would affect protein 
stability. To comprehend the functional effects of 
twenty-two CXCL6 mutations, we employ the 
mutation 3D tool. By doing so, we can learn a great 
deal about gene function, disease mechanisms, and 
personalised medicine (Nussinov et al., 2019). This 
approach allows us to predict how mutations might 
affect protein function, which is key to understanding 
how they can either worsen or improve disease 
conditions. 

From our analysis, we identified two uncovered 
mutations out of twenty-two, clustered ten others, 
and examined ten are as covered, all using 3D 
mutation modeling.In order to ensure that the 22 
nsSNPs are structurally valid, we conduct further 
analyses on them.To improve the quality of the 
structure of the targeted proteins, it is essential to 
validate the experimental model. We used various 
computational tools such as SWISS-MODEL, 
PROCHECK, QMEAN, ERRAT, check 3D, and TM-Align 
to confirm the experimental model. Nevertheless, we 
submitted our query sequence to the homology-
modeling server SWISS-MODEL.The server generated 
the one hundred and sixteenth template, P801621, 
out of fifty templates based on the best alignment. 
CXCL6 covered the entire sequence of our target 
protein. The model falls within the amino acid range 
of 1–114, suggesting potential conservation in this 
area of the protein sequence. The Ramachandran plot 
is given top priority among all the verification 
matrices because it shows the φ-ψ torsion angles of 
the projected models' protein backbone. The 
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Ramachandran plot is split into four areas: the core, 
the allowed, the generously allowed, and the 
disallowed region. PROCHECK shows the stereo-
chemical quality of a protein structure, and SWISS-
MODEL shows the favored region. Over 90% of 
residues in the core region or the most favored region 
can achieve a favorable structure. The CXCL6 protein 
appears to be in a stable and energetically 
advantageous shape, as 82.6% of its amino acid 
residues fall inside a highly favorable area, according 
to a Ramachandran plot analysis. Other computation-
al techniques provide scores for protein model quality 
estimation.With identically sized experimental 
structures, the QMEAN Z-score for model quality 
estimation was -3.10. According to AboElkhair et al. 
(2021), a model is considered to have low quality if its 
QMEAN-Z score is -4.0 or lower. On the other hand, a 
higher score shows that the structure is in a favorable 
state. Using the TM-align tool, we structurally 
compared the wild-type and mutant structures. 

When the TM score is low and the RMSD value is 
high, there is a structural dissimilarity. According to 
the Swiss model, the produced structure is of high 
quality and suitable for protein-ligand interactions. 
We proceeded to analyze 1 model and 6 mutant 
proteins based on the average score of all validation 
software. We conducted docking for 25 medicines and 
their five probable targets using the software PyRx 
Auto Dock Vina 0.4. The software provided docking 
scores as well as energy minimization values. Out of a 
total of 25 ligand and 6 protein interactions, the 
molecular docking studies found the following drug-
target interactions to have the best scores. The drug-
target interactions with the highest scores were the 
Model-Amphotericin complex (-8.5), Model-Lectin 
complex (-7.9), Model-Pyranomentoflavone complex 
(-7.7), Model-Laminin complex (-7.3), Model-IND24 
complex (-7.1), and Model-Batrachotoxin complex 
(7.3). We used Pyrx and the Discovery Studio 
Visualizer to see how the ligand-target complex 
interacted.  

We can infer the impact of a harmful mutation on 
a protein from its evolutionary conservation profile. 
Negative effects are more likely to be caused by 
nsSNPs found in highly conserved regions compared 
to those found in variable regions (Yazar & Özbek, 
2021). We examined the possible consequences of the 
most harmful nsSNPs—L47M, C51R, C51Y, C75G, and 
P97T using the Hope server. We also ran HOPE on the 
CXCL6 protein structure to investigate the impact of 
polymorphism, size, position, amino acid character-
ristics, variations, and variant locations of the five 
most harmful nsSNPs listed above. The hope server 
predicted that 5 nsSNPs could potentially damage the 
protein structure. Future research is needed to 
understand pathogenicity, protein stability, and 
nsSNPs linked to disease. Genetic testing and 
personalized treatment for CXCL6-related maligna-

ncies will become more accurate with the help of new 
computational methods and docking studies. With 
better in silico models, we can learn more about 
nsSNPs and their effects, which can lead to more 
efficient drug discovery.  

More research into the structural and functional 
effects of these SNPs utilizing state-of-the-art 
computational methods and molecular dynamics 
models is an exciting promise for the future. 
Enhancing our understanding of the molecular 
pathways behind CXCL6-related malignancies will 
pave the way for the development of more effective 
treatment approaches. Experimental validation using 
wet lab techniques will provide more proof of the 
SNPs' involvement in cancer genesis and progression. 
This information will enable the development of 
targeted medicines that aim to disrupt the CXCL6 
signaling pathway. 

5. Conclusion 

The CXCL6 gene plays a pivotal role in tumor growth 
and progression by promoting angiogenesis and 
metastasis. Its overexpression in breast, lung, and 
colon cancers is associated with poorer prognosis and 
shorter survival rates. Targeted therapies that inhibit 
the CXCL6 pathway are critical for effective early 
detection and treatment of cancer. Our study 
identified 22 nsSNPs that significantly impact the 
CXCL6, underscoring the necessity for future genome 
association studies and in silico approaches for rapid 
and cost-effective screening. We modeled the 3D 
CXCL6 protein and identified the mutations L47M, 
C51R, L92M, L92V, P73S, and Q104K, which were 
docked with 25 compounds. The 2D and 3D 
interactions of both the wild-type and mutant 
proteins demonstrated high binding scores with 
ligands such as Amphotericin, Lectin, Pyranomentofl-
avone, Batrachotoxin, Laminin, and IND. Our research 
aims to elucidate the mechanisms by which CXCL6 
contributes to cancer progression, ultimately 
developing therapeutic targets that enhance patient 
outcomes. Understanding the CXCL6 mutations drive 
cancer development is crucial for advancing 
treatment strategies. 
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Supplementary Data 
 

Table S1  Effect of polymorphism as analyzed by HOPE tool. 
SNP ID Amino Acid change Effect of variation 

rs367612330 
(L47M) 

 
Probably Damaging 

Variant is bigger than the wild type residue. This might 
lead to bumps. The wild type is very conserved. The 
mutated residue is located in a domain. Mutation of the 
residue might disturb this function. 

rs1191410166 
(C51R) 

 
Probably Damaging 

The wild residue is higher in magnitude and more 
hydrophobic than the mutant residue. Wild residue was 
neutral and mutant residue was positive.. this mutation is 
probably damaging to protein. 

rs757247423 
(C51Y) 

 
Probably Damaging 

The mutant residue is bigger than the wild type residue. 
The wild type residue is more hydrophobic than the 
mutant residue. Hydrophobic interactions can be lost. This 
mutation is probably damaging to protein. 

rs1213029852 
(C75G) 

 
Probably Damaging 

The mutant residue is smaller than the wild type residue. 
The wild type residue is more hydrophobic than the 
mutant residue.C75G is probably damaging to protein. 
 

rs1239375597 
(P97T) 

 
Probably Damaging 

The residue of wild type is more hydrophobic than the 
mutant residue. The wild type residue is very conserved. 
Based on conservation scores this mutation is probably 
damaging to protein. 

 
Table S2 Binding affinities of 25 compounds with native and mutant proteins 

Ligand P80162.1.A (Model) L47M C51R L92M L92V P73S Q104K 
Amphotericin -8.5 -9.5 -9.5 -9.5 -9.5 -9.4 -9.4 
Apoptozole -6.4 -6.2 -6.4 -6.2 -6.3 -6.2 -6.4 
Batrachotoxin -7.3 -7.3 -7.3 -7.3 -7.3 -6.3 -7.3 
Benzazepinone -5.1 -5.1 -5.1 -5 -4.5 -5 -5.1 
Chromane -4.1 -4.1 -4.1 -4.1 -4.1 -4 -4.1 
Chromophore -6.2 -6.5 -6.3 -6.3 -6.3 -6.3 -6.6 
Citrinin -5.5 -5.4 -5.3 -5.4 -5.4 -5.4 -5.4 
Hispolon -5.3 -5.3 -5.3 -5.4 -5.3 -5.3 -5.3 
Hyaluronic acid -5.7 -5.7 -5.8 -5.8 -5.7 -6.1 -5.7 
Imipramine -5 -4.8 -4.8 -5 -5 -4.9 -4.8 
IND24 -7.1 -6.1 -7.1 -7 -7.1 -7 -6.6 
Lacosamide -5.2 -5.2 -5.2 -4.7 -4.7 -5 -5.1 
Laminin -7.3 -7.4 -7.1 -7.2 -7.7 -7.5 -7.4 
Lamotrigine -6 -6 -6 -6.1 -6 -6 -6 
Lectin -7.9 -8.9 -7.8 -9.1 -8.9 -8.7 -8.8 
Ladocaine -4.6 -4.6 -4.6 -4.8 -4.8 -4.7 -4.8 
Melanin -6.4 -6.3 -6.4 -6.4 -6.4 -6.3 -6.4 
PX4 -4 -4.6 -4.5 -4.2 -4.4 -4.6 -4.5 
Pyranomentoflavone -7.7 -7.7 -7.7 -7.7 -7.7 -7.7 -7.7 
Quercetin -6 -6 -6 -6 -6 -6 -6 
Tetracycline -5.4 -6.3 -4.6 -5.4 -5.4 -6.2 -5.4 
Saxitoxin -5.6 -5.6 -5.6 -5.7 -5.6 -5.8 -5.6 
Vixotrigine -6.3 -6 -6 -6.2 -6.2 -6.1 -6.1 
Proflavine -5.3 -5.3 -5.6 -5.3 -5.2 -5.5 -5.1 
Eugenol -4.5 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 
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