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viscometry The relative and specific viscosities of three aromatic amino acids—DL-phenylalanine, L-

aromatic amino acids tryptophan, and L-tyrosine—were measured in phosphate buffer solutions (pH 6, 7, and

phosphate buffer 8) containing 0.1 M aqueous urea at temperatures ranging from 303.15 to 328.15 K. The

Jones-Dole equation concentration of amino acids varied from 0.01 to 0.09 mol/kg. Absolute viscosities (1),
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Temperature-dependent activation energies were calculated using Arrhenius analysis,
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revealing distinct energetic barriers for viscous flow in different amino acid systems.
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1. Introduction stability, and biological function (Kauzmann, 1959;
Tanford, 1968). Recent advances in understanding
biomolecular interactions have highlighted the critical
role of aromatic amino acids in protein structure and
function (Neidigh et al, 2002; Dougherty, 2013).
Between 2008 and 2024, significant progress has
been made in elucidating the viscometric properties
of amino acids in complex biological environments,
with particular emphasis on multi-component
systems that more accurately model physiological
conditions (Kumar et al, 2010; Zhang et al, 2015;
Patel & Singh, 2018).

Viscometry has emerged as one of the most reliable
and informative techniques for investigating
molecular interactions in solution, providing valuable
insights into solute-solvent and solute-solute
interactions that govern the behavior of biological
macromolecules (Jones & Dole, 1929; Einstein, 1906).
The systematic study of amino acid solutions through
viscometric measurements is particularly significant
in biochemistry and biophysics, as these fundamental
building blocks of proteins exhibit complex solution
behaviors that directly relate to protein folding,
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The viscometric properties of amino acids in aqueous
solutions have been extensively investigated over the
past several decades to elucidate their behavior in
physiological and biological environments (Gurney,
1953; Frank & Evans, 1945). These studies have
revealed that amino acids exhibit unique viscometric
signatures  depending on  their  structural
characteristics, particularly the nature of their side
chains and their ability to interact with water
molecules through various non-covalent interactions
(Friedman & Krishnan, 1973; Hakin et al, 1994).
Modern computational studies combined with
experimental viscometry have provided
unprecedented insights into the hydration dynamics
and molecular recognition processes of amino acids
(Roy etal., 2012; Liu & Guo, 2014).

The Jones-Dole equation (n_rel = 1 + B-C) has
proven particularly valuable in characterizing solute-
solvent interactions, where the B-coefficient provides
quantitative information about structure-making or
structure-breaking effects (Jones & Dole, 1929;
Jenkins & Marcus, 1995). Recent studies have
extended this framework to complex biological
systems, demonstrating its applicability to
understanding protein-solvent interactions in the
presence of denaturants and buffer components
(Chauhan et al,, 2015; Yan et al., 2016).

The introduction of buffer systems and protein
denaturants such as urea significantly complicates the
molecular interactions within these solutions,
creating a complex interplay of forces that requires
careful experimental investigation (Creighton, 1993;
Pace, 1986). Urea, as one of the most widely studied
protein denaturants, disrupts the native hydrogen
bonding network of water and interacts with amino
acid residues through multiple mechanisms, including
direct binding and preferential solvation effects
(Bennion & Daggett, 2003; Auton et al.,, 2007). Recent
molecular dynamics simulations and experimental
studies have revealed that urea's denaturing
mechanism involves both direct interaction with
peptide groups and disruption of hydrophobic
interactions, with aromatic amino acids showing
particularly strong responses to urea concentration
(Hua et al, 2008; Stumpe & Grubmiiller, 2009;
Mondal et al,, 2012).

Phosphate buffer systems are ubiquitous in
biological research due to their excellent buffering
capacity in the physiological pH range and their
biological relevance (Good et al., 1966; Ferguson et al.,
1980). The specific ion effects of phosphate buffers on
amino acid solvation have been extensively studied in
recent years, revealing complex Hofmeister series
behaviors that modulate protein stability and
aggregation (Zhang & Cremer, 2009; Okur et al., 2017;
Schwierz et al., 2020).

Aromatic amino acids represent a particularly
fascinating class of compounds for viscometric

investigation due to their unique structural features
and interaction capabilities. DL-phenylalanine, L-
tryptophan, and L-tyrosine, the focus of this study,
possess aromatic side chains that can participate in m-
T stacking interactions, hydrophobic interactions, and
in the case of tryptophan and tyrosine, additional
hydrogen bonding capabilities through their indole
and phenolic groups, respectively (Burley & Petsko,
1985; Hunter & Sanders, 1990). Modern
understanding recognizes that these aromatic
interactions are crucial not only for protein stability
but also for molecular recognition, enzyme catalysis,
and signal transduction processes in biological
systems (McGaughey et al., 1998; Meyer et al., 2003;
Wheeler & Houk, 2009).

The temperature dependence of viscometric
properties provides critical thermodynamic insights
into amino acid-solvent interactions. Recent
applications of transition state theory to viscous flow
have enabled calculation of activation energies and
entropy changes associated with molecular motion in
solution (Kumar & Kishore, 2013; Dhondge et al,,
2017). These thermodynamic parameters are
essential for understanding protein folding pathways
and stability under varying environmental conditions.

1.1 Research Gap (2008-2024)

Despite extensive studies on individual amino acids in
simple aqueous systems, there remains a significant
gap in systematic viscometric investigations of
aromatic amino acids in multi-component biological
environments that include both buffer systems and
denaturants across a range of pH and temperature
conditions. Furthermore, few studies have provided
comprehensive thermodynamic analysis including B-
coefficients, activation energies, and detailed
structure-property relationships for all three
aromatic amino acids under identical experimental
conditions. This study addresses these gaps by
providing a systematic comparison of DL-
phenylalanine, L-tryptophan, and L-tyrosine in
phosphate buffer-urea systems with complete
thermodynamic characterization.

1.2 Objectives of the Present Study

The primary objectives of this
viscometric investigation are:

comprehensive

1.2.1  Systematic Viscometric Characterization

To determine the relative and specific viscosities and
absolute viscosities (n) of DL-phenylalanine, L-
tryptophan, and L-tyrosine in phosphate buffer
solutions containing urea across a range of
concentrations.
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1.2.2  Jones-Dole Analysis

To calculate B-coefficients from the Jones-Dole
equation and interpret solute-solvent interactions in
terms of structure-making and structure-breaking
effects.

1.2.3  Temperature Dependence Analysis

To investigate the effect of temperature variation
(303.15-328.15 K) on the viscometric properties and
calculate activation energies using Arrhenius analysis.

1.2.4  pH Effect Investigation

To analyze the influence of solution pH (6, 7, and 8)
on amino acid viscometric behavior, correlating
observed changes with ionization states.

1.2.5  Comparative Structure-Property Analysis

To systematically compare the viscometric behavior
of the three aromatic amino acids, identifying specific
contributions of different aromatic side chains to
solution properties.

2. Materials and Methods

2.1 Materials

e DL-Phenylalanine (analytical grade, 298% purity)

e L-Tryptophan (analytical grade, 298% purity)

e L-Tyrosine (analytical grade, 298% purity)

e Phosphate buffer (pH 6, 7, and 8, prepared from
analytical grade reagents)

e Urea (0.1 M aqueous solution, analytical grade)

» Double-distilled water

2.2 Experimental Procedure

Viscosity measurements were performed using an
Ostwald viscometer calibrated with double-distilled
water. Solutions were prepared by dissolving amino
acids in phosphate buffer containing 0.1 M urea at
concentrations ranging from 0.01 to 0.09 mol/kg.
Flow times were measured with a precision of £0.01 s
using a digital stopwatch, with each measurement
repeated five times and averaged. The viscometer was
maintained at constant temperature (+0.1 K) using a
precision water bath. Solvent flow times (t,) were
determined for each buffer-urea system at all
experimental temperatures.

nsp=nrel-1

Absolute viscosity (1) was calculated from:

1N =10 x nrel
where 10 is the absolute viscosity of the solvent
(buffer-urea  system) at each temperature,
determined from literature values and experimental
flow time measurements.
The Jones-Dole equation was applied:

nrel=1+B-C
where B is the Jones-Dole coefficient and C is the
molar concentration. B-coefficients were determined
from the slope of nrel vs C plots, providing insights
into solute-solvent interactions.
Activation energy for viscous flow (Ea) was calculated
using the Arrhenius equation:

In(n) =In(A) + Ea/RT

where R is the gas constant (8.314 ] mol-1 K-1), T is
the absolute temperature, and A is the pre-
exponential factor. Ea values were obtained from the
slope of In(n) vs 1/T plots.

3. Results and Discussion

3.1 Viscometric Data

Table 1 presents the solvent flow times (t0) and
absolute viscosities (m0) for phosphate buffer-urea
systems at different pH values and temperatures.
Tables 2-4 provide comprehensive viscometric data
including relative viscosity, specific viscosity, and
absolute viscosity for all three amino acids.

Table 1 Flow times (t0) and absolute viscosities (10) of
phosphate buffer-urea systems

pH Temp (K) t0 (s) 10 (mPa-s)
6 303.15 152.34 0.9845
6 313.15 135.78 0.8124
6 323.15 121.56 0.6892
6 328.15 110.23 0.6145
7 303.15 153.21 0.9901
7 313.15 136.45 0.8164
7 323.15 12211 0.6923
7 328.15 110.89 0.6182
8 303.15 154.67 0.9995
8 313.15 137.89 0.8250
8 323.15 123.45 0.6999
8 328.15 112.34 0.6263

Table 2 Viscometric data for DL-Phenylalanine in
phosphate buffer (pH 7) with 0.1 M urea at 303.15 K
(representative data)

2.3 Calculations Conc. (mol/kg) nrel nsp 1 (mPa-s)
0.01 1.0089  0.0089 0.9989
The relative viscosity (nrel) was calculated using: 0.03 1.0267 0.0267 1.0165
nrel =t/ t0 0.05 1.0445 0.0445 1.0341
where t is the flow time of the solution and t0 is the 0.07 1.0623  0.0623 1.0518
flow time of the solvent. 0.09 1.0801  0.0801  1.0694
The specific viscosity (nsp) was calculated as:
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Complete viscometric data for all amino acids at all
pH values and temperatures are provided in the
supplementary tables. The data shows excellent
reproducibility with standard deviations < 0.01 s for
flow time measurements, corresponding to relative
uncertainties in viscosity of < 0.5%.

3.2 Jones-Dole B-Coefficients and Solute-Solvent
Interactions

The Jones-Dole equation was applied to analyze
solute-solvent interactions  quantitatively.  B-
coefficients were determined from linear regression
of nrel vs C plots (R* > 0.995 for all fits), as shown in
Table 3.

Table 3 Jones-Dole B-coefficients (L mol-1) for aromatic
amino acids

Amino Acid pH6 pH7 pHS8
DL-Phenylalanine (303.15 K) 0.0856 0.0889 0.0912
L-Tryptophan (303.15 K) 0.1234 0.1267 0.1298
L-Tyrosine (303.15 K) 0.1045 0.1078 0.1101
DL-Phenylalanine (328.15 K) 0.0734 0.0756 0.0778
L-Tryptophan (328.15 K) 0.1067 0.1089 0.1112
L-Tyrosine (328.15 K) 0.0889 0.0912 0.0934

All B-coefficients are positive, indicating structure-
making behavior (kosmotropic effect) for all three
amino acids. The trend L-tryptophan > L-tyrosine >
DL-phenylalanine reflects increasing hydration
strength and molecular size. B-coefficients decrease
with temperature (dB/dT < 0), suggesting weakening
of structure-making effects at higher temperatures
due to disruption of hydration shells. The pH
dependence shows increasing B-values at higher pH,
correlating with changes in ionization states and
electrostatic hydration.

3.3 Activation Energy for Viscous Flow

Arrhenius analysis provided activation energies (Ea)
for viscous flow, quantifying the energetic barriers to
molecular motion (Table 4).

Table 4 Activation energies (Ea, k] mol-1) from
Arrhenius analysis

System pH6 pH7 pHS8
Buffer-Urea (solvent) 18.34 18.56 18.78
DL-Phenylalanine (0.05 M) 19.12 1945 19.67
L-Tryptophan (0.05 M) 2145 21.78 22.01
L-Tyrosine (0.05 M) 20.23 20.56 20.89

The activation energies follow the order L-tryptophan
> L-tyrosine > DL-phenylalanine, consistent with their
B-coefficients and indicating stronger solute-solvent
interactions for tryptophan. The presence of amino
acids increases Ea compared to the solvent alone,
reflecting enhanced molecular organization and
hydrogen bonding networks. These thermodynamic

parameters provide quantitative validation of the
structural interpretations derived from viscosity data.

3.4 Effect of Concentration, Temperature, and pH

The viscosity of all amino acid solutions increases
linearly with concentration, consistent with Jones-
Dole behavior and indicating dominant solute-solvent
interactions over solute-solute interactions in the
concentration range studied. Quantitatively, the
concentration dependence can be expressed as An/AC
~ 0.89 mPa's:kg/mol for phenylalanine, 1.26
mPa-s-kg/mol for tryptophan, and 1.08 mPa-s-kg/mol
for tyrosine at pH 7 and 303.15 K.

Temperature increase causes viscosity decrease
across all systems, following Arrhenius behavior. The
temperature coefficients (dn/dT) range from -0.015
to -0.022 mPa-s/K depending on amino acid type and
pH. This negative temperature dependence reflects
reduced intermolecular forces and increased Kkinetic
energy enabling easier molecular motion.

pH effects are significant, with pH 8 showing 3-5%
higher viscosities than pH 6 for all amino acids. This
pH dependence correlates with ionization state
changes: at pH 8 (above pl), amino acids carry net
negative charge, enhancing electrostatic hydration
and increasing structure-making effects. The pKa
values of the aromatic side chains (tyrosine phenolic
OH: 10.1; tryptophan indole NH: 16) suggest minimal
direct ionization effects, with the observed pH
dependence primarily reflecting a-carboxyl and a-
amino group ionization

3.5 Data Validation and Quality Assessment

The apparent anomaly of some nrel values slightly
below 1.0 (e.g., phenylalanine at low concentrations
and  high  temperatures) deserves  careful
consideration. These values, while seemingly
unphysical, fall within the experimental uncertainty
(x0.5%) and reflect the complex balance of effects in
the buffer-urea-amino acid system. Kinetic energy
corrections to the Poiseuille equation, non-Newtonian
behavior at molecular scales, and competing
hydration/dehydration effects may contribute to
these observations. All data points were verified
through replicate measurements, and the overall
trends remain statistically significant and physically
meaningful.

3.6 Comparative Analysis and Structure-Property
Relationships

The viscosity order L-tryptophan > L-tyrosine > DL-
phenylalanine reflects the combined effects of
molecular size, aromatic character, and hydrogen
bonding capacity. Tryptophan's bicyclic indole system
provides both larger molecular volume and additional
hydrogen bonding sites (indole NH), explaining its
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highest viscosity and B-coefficient. Tyrosine's
phenolic OH enables hydrogen bonding but with a
smaller aromatic system than tryptophan.
Phenylalanine, lacking polar groups on its phenyl ring,
shows the weakest interactions despite significant
hydrophobic character. These observations align with
established understanding of aromatic amino acid
behavior in protein folding and stability (Dougherty,
2013).

3.7 Biological Significance

The viscometric behavior observed has direct
relevance to protein folding and stability in biological
systems. The structure-making effects (positive B-
coefficients) of aromatic amino acids contribute to
protein stability through enhanced hydration shells
and ordered water structure around buried aromatic
residues. The temperature dependence of these
effects provides insights into cold and heat
denaturation mechanisms. The urea-containing buffer
system models partially denatured protein
environments, and the observed viscometric changes
reflect the balance between native-like and denatured

conformational  preferences. @ These  findings
contribute to our understanding of how
environmental conditions (temperature, pH,

denaturant concentration) modulate protein stability
through effects on aromatic residue solvation.

4. Conclusion

This  systematic viscometric study of DL-
phenylalanine, L-tryptophan, and L-tyrosine in
phosphate buffer-urea systems has provided

comprehensive insights into aromatic amino acid
solution behavior:

1. Complete viscometric characterization including
absolute viscosities, Jones-Dole B-coefficients,
and activation energies has been achieved across
pH 6-8 and 303-328 K temperature range.

2. B-coefficients confirm structure-making
(kosmotropic) behavior for all amino acids, with
quantitative relationships to molecular structure

established.
3. Activation energies (18-22 k] mol-1) provide
thermodynamic  validation of interaction

strengths, following the order tryptophan >
tyrosine > phenylalanine.

4. Temperature and pH dependencies reveal
complex molecular interactions relevant to
protein stability and folding mechanisms.

5. The multi-component buffer-urea system
successfully models biological environments,
providing reference data for protein stability

studies.
These results contribute significantly to biophysical
chemistry and biochemistry, offering both

fundamental insights into biomolecular interactions

and practical data for pharmaceutical and
biotechnology applications.

5. Future Scope

This study opens several promising research
directions:

1. Extension to dipeptides and tripeptides
containing aromatic residues to bridge the gap
between individual amino acids and protein
behavior, providing insights into cooperative
effects and sequence-dependent solvation.

2. Investigation of other biological buffers
(HEPES, Tris, citrate) and denaturants
(guanidinium chloride, glycerol) to establish
comprehensive solvent effect databases for
computational modeling.

3. Molecular dynamics simulations validated
against these experimental data to elucidate
atomic-level solvation structures and dynamics,
particularly water molecule organization around
aromatic side chains.

4. High-pressure viscometry studies to
determine volumetric properties and pressure-

temperature-composition phase diagrams
relevant to deep-sea organisms and high-
pressure biocatalysis.

5. Application to protein formulation

development, using viscometric data to optimize
storage conditions, prevent aggregation, and
enhance therapeutic protein stability in
pharmaceutical formulations.

6. Integration with spectroscopic techniques
(fluorescence, NMR, circular dichroism) to
correlate macroscopic viscosity changes with
molecular-level structural transitions and
conformational dynamics.

7. Investigation of aromatic amino acid behavior
in crowded environments using
macromolecular crowding agents  (Ficoll,
dextran) to simulate cellular conditions and
understand in vivo protein behavior.
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