Attachment of Small Molecule with DNA and RNA

Authors

  • Subhasis Basu IIP-Post Doctoral Fellow, Eudoxia Research Centre India, Eudoxia Research University, New Castle, USA https://orcid.org/0000-0001-6299-220X

Keywords:

DNA structure, A to Z DNA folding, Ligands and target structures, Genetic drug design, RNA structure

Abstract

The four natural DNA bases A-Adenosine, T-Thymine, G-Guanine, C-Cytosine are associate in base pairs as (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA which is duplex of DNA, also known as ℬ-DNA. The intrinsic supra molecular properties of nucleo bases make other associations possible such as base triplets or quartets, which thus translates into a diversity of DNA structures is ripe with approximately 20 letters, (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and by extension, valuable targets for chemical biology invention. In the present review, we summarise (1) what is known about alternative DNA structures (2) what are they? (3) When, where and how they fold?

These are all proceeded to discuss further and those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures. In order to intervene in the biological processes, particularly three and four ways of DNA junctions are involved there. This new and simulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.

Downloads

Download data is not yet available.

References

Hoshika,S., Leal,N.A., Kim,M.-J., Kim,M.-S., Karalkar,N.B., Kim,H.-J., Bates,A.M., Watkins,N.E., SantaLucia,H.A., Meyer,A.J. et al. (2019) Hachimoji DNA and RNA: a genetic system with eight building blocks. Science, 363, 884–887.

Kirnos,M.D., Khudyakov,I.Y., Alexandrushkina,N.I. and Vanyushin,B.F. (1977) 2-Aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature, 270, 369–370.

Pezo,V., Jaziri,F., Bourguignon,P.-Y., Louis,D., Jacobs-Sera,D., Rozenski,J., Pochet,S., Herdewijn,P., Hatfull,G.F., Kaminski,P.-A. et al. (2021) Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science, 372, 520–524.

Sleiman,D., Garcia,P.S., Lagune,M., Loc’h,J., Haouz,A., Taib,N., Ro¨ thlisberger,P., Gribaldo,S., Marlie`re,P. and Kaminski,P.A. (2021) A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes. Science, 372, 516–520.

Zhou,Y., Xu,X., Wei,Y., Cheng,Y., Guo,Y., Khudyakov,I., Liu,F., He,P., Song,Z., Li,Z. et al. (2021) A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science, 372, 512–516.

Ghosh,A. and Bansal,M. (2003) A glossary of DNA structures from a to Z. Acta Crystallogr. D: Biol. Crystallogr., 59, 620–626.

Franklin,R.E. and Gosling,R.G. (1953) The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Crystallogr., 6, 673–677.

Franklin,R.E. and Gosling,R.G. (1953) Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature, 172, 156–157.

Franklin,R.E. and Gosling,R.G. (1953) Molecular configuration in sodium thymonucleate. Nature, 171, 740–741.

Elkin,L.O. (2003) Rosalind franklin and the double helix. Physics Today, 56, 42–48.

Ravichandran,S., Subramani,V.K. and Kim,K.K. (2019) Z-DNA in the genome: from structure to disease. Biophys. Rev., 11, 383–387.

Crick,F.H. (1958) On protein synthesis. Symp. Soc. Exp. Biol., 12, 138–163.

Crick,F. (1970) Central dogma of molecular biology. Nature, 227, 561.

Wilkins,M.H.F., Stokes,A.R. and Wilson,H.R. (1953) Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature, 171, 738–740.

Dalla Pozza,M., Abdullrahman,A., Cardin,C.J., Gasser,G. and Hall,J.P. (2022) Three’s a crowd – stabilisation, structure, and applications of DNA triplexes. Chem. Sci., 13, 10193–10215.

Htun,H. and Dahlberg,J.E. (1989) Topology and formation of triple-stranded H-DNA. Science, 243, 1571–1576.

Felsenfeld,G., Davies,D.R. and Rich,A. (1957) Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc., 79, 2023–2024.

Lee,J.S., Johnson,D.A. and Morgan,A.R. (1979) Complexes formed by (pyrimidine) n (purine)n DNAs on lowering the pH are three-stranded. Nucleic Acids Res., 6, 3073–3091.

Gellert,M., Lipsett,M.N. and Davies,R.D. (1962) Helix formation by guanylic acid. Proc. Natl. Acad. Sci. U

Lilley,D.M. (1980) The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc. Natl. Acad. Sci. U.S.A., 77, 6468–6472.

Panayotatos,N. and Wells,R.D. (1981) Cruciform structures in supercoiled DNA. Nature, 289, 466–470.

Pohl,F.M. (1967) Ein modell der DNS-Struktur. Naturwissenschaften, 54, 616–616.

Wang,A.H.J., Quigley,G.J., Kolpak,F.J., Crawford,J.L., van Boom,J.H., van der Marel,G. and Rich,A. (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, 680–686.

Sivakova,S. and Rowan,S.J. (2005) Nucleobases as supramolecular motifs. Chem. Soc. Rev., 34, 9–21.

Hoogsteen,K. (1959) The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine. Acta Crystallogr., 12, 822–823.

Hoogsteen,K.R. (1963) The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallogr., 16, 907–916.

Arnott,S. and Bond,P.J. (1973) Structures for Poly(U).poly(A).poly(U) triple stranded polynucleotides. Nat. New Biol., 244, 99–101.

Biffi,G., Tannahill,D., McCafferty,J. and Balasubramanian,S. (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem., 5, 182–186.

Di Antonio,M., Ponjavic,A., Radzevicˇius,A., Ranasinghe,R.T., Catalano,M., Zhang,X., Shen,J., Needham,L.-M., Lee,S.F., Klenerman,D. et al. (2020) Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem., 12, 832–837.

Treangen,T.J. and Salzberg,S.L. (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet., 13, 36–46.

Wang,G. and Vasquez,K.M. (2006) Non-B DNA structure-induced genetic instability. Mutat. Res., 598, 103–119.

Pearson,C.E. and Sinden,R.R. (1996) Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile x loci. Biochem., 35, 5041–5053.

Wells,R.D. (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci., 32, 271–278.

Georgakopoulos-Soares,I., Morganella,S., Jain,N., Hemberg,M. and Nik-Zainal,S. (2018) Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res., 28, 1264–1271.

Murat,P., Guilbaud,G. and Sale,J.E. (2020) DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats. Genome Biol., 21, 209.

Singleton,M.R., Dillingham,M.S. and Wigley,D.B. (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem., 76, 23–50.

Chambers,V.S., Marsico,G., Boutell,J.M., Di Antonio,M., Smith,G.P. and Balasubramanian,S. (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol., 33, 877–881.

Pen˜a Martinez,C.D., Zeraati,M., Rouet,R., Mazigi,O., Gloss,B., Chan,C.-L., Bryan,T.M., Smith,N.M., Dinger,M.E., Kummerfeld,S. et al. (2022) Human genomic DNA is widely interspersed with i-motif structures. bioRxiv doi: https://doi.org/10.1101/2022.04.14.488274, 14 April 2022, preprint: not peer reviewed.

Marsico,G., Chambers,V.S., Sahakyan,A.B., McCauley,P., Boutell,J.M., Antonio,M.D. and Balasubramanian,S. (2019) Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res., 47, 3862–3874.

Feng,Y., Tao,S., Zhang,P., Rota Sperti,F., Liu,G., Cheng,X., Zhang,T., Yu,H., Wang,X., Chen,C. et al. (2022) Epigenomic features of DNA G-quadruplexes and their roles in regulating rice gene transcription. Plant Physiol., 188, 1632–1648

Ma,X., Feng,Y., Yang,Y., Li,X., Shi,Y., Tao,S., Cheng,X., Huang,J., Wang,X., Chen,C. et al. (2022) Genome-wide characterization of i-motifs and their potential roles in the stability and evolution of transposable elements in rice. Nucleic Acids Res., 50, 3226–3238.

Li,M., Tian,R., Monchaud,D. and Zhang,W. (2022) Omics studies of DNA G-/C-quadruplexes in plants. Trends Genet., 38, 999–1002.

Ha¨nsel-Hertsch,R., Beraldi,D., Lensing,S.V., Marsico,G., Zyner,K., Parry,A., Di Antonio,M., Pike,J., Kimura,H. and Narita,M. (2016) G-quadruplex structures mark human regulatory chromatin. Nat. Genet., 48, 1267–1272.

Kouzine,F., Wojtowicz,D., Baranello,L., Yamane,A., Nelson,S., Resch,W., Kieffer-Kwon,K.-R., Benham,C.J., Casellas,R., Przytycka,T.M. et al. (2017) Permanganate/S1 nuclease footprinting reveals Non-B DNA structures with regulatory potential across a mammalian genome. Cell Syst., 4, 344–356.

van Wietmarschen,N., Sridharan,S., Nathan,W.J., Tubbs,A., Chan,E.M., Callen,E., Wu,W., Belinky,F., Tripathi,V., Wong,N. et al. (2020) Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature, 586, 292–298.

Matos-Rodrigues,G., van Wietmarschen,N., Wu,W., Tripathi,V., Koussa,N.C., Pavani,R., Nathan,W.J., Callen,E., Belinky,F., Mohammed,A. et al. (2022) S1-END-seq reveals DNA secondary structures in human cells. Mol. Cell, 82, 3538–3552.

Shah,K.A., Shishkin,A.A., Voineagu,I., Pavlov,Y.I., Shcherbakova,P.V. and Mirkin,S.M. (2012) Role of DNA polymerases in repeat-mediated genome instability. Cell Rep., 2, 1088–1095.

Shah,K.A. and Mirkin,S.M. (2015) The hidden side of unstable DNA repeats: mutagenesis at a distance. DNA Repair, 32, 106–112.

Wang,G. and Vasquez,K.M. (2014) Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair, 19, 143–151.

Jackson,S.P. and Bartek,J. (2009) The DNA-damage response in human biology and disease. Nature, 461, 1071–1078.

Ciccia,A. and Elledge,S.J. (2010) The DNA damage response: making it safe to play with knives. Mol. Cell, 40, 179–204.

Blackford,A.N. and Jackson,S.P. (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell, 66, 801–817.

Mirkin,E.V. and Mirkin,S.M. (2007) Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev., 71, 13–35.

Belotserkovskii,B.P., Mirkin,S.M. and Hanawalt,P.C. (2013) DNA sequences that interfere with transcription: implications for genome function and stability. Chem. Rev., 113, 8620–8637.

Zell,J., Rota Sperti,F., Britton,S. and Monchaud,D. (2021) DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem. Biol., 2, 47–76.

Kaushal,S. and Freudenreich,C.H. (2019) The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer, 58, 270–283.

del Mundo,I.M., Vasquez,K.M. and Wang,G. (2019) Modulation of DNA structure formation using small molecules. Biochim. Biophys. Acta - Mol. Cell Res., 1866, 118539.

Roos,W.P., Thomas,A.D. and Kaina,B. (2016) DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer, 16, 20–33.

Hilton,J., Gelmon,K., Bedard,P.L., Tu,D., Xu,H., Tinker,A.V., Goodwin,R., Laurie,S.A., Jonker,D., Hansen,A.R. et al. (2022) Results of the phase I CCTG IND.231 trial of CX-5461 in patients with advanced solid tumors enriched for DNA-repair deficiencies. Nat. Commun., 13, 3607.

Burge,S., Parkinson,G.N., Hazel,P., Todd,A.K. and Neidle,S. (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res., 34, 5402–5415.

Rhodes,D. and Lipps,H.J. (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res., 43, 8627–8637.

Varshney,D., Spiegel,J., Zyner,K., Tannahill,D. and Balasubramanian,S. (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol., 21, 459–474.

Lilley,D.M. (2000) Structures of helical junctions in nucleic acids. Q. Rev. Biophys., 33, 109–159.

Altona,C. (1996) Classification of nucleic acid junctions. J. Mol. Biol., 263, 56.

Monchaud,D. and Teulade-Fichou,M.-P. (2008) A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem., 6, 627–636.

Le,T.V.T., Han,S., Chae,J. and Park,H.-J. (2012) G-Quadruplex binding ligands: from naturally occurring to rationally designed molecules. Curr. Pharm. Des., 18, 1948–1972.

Neidle,S. (2016) Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem., 59, 5987–6011.

Spiegel,J., Adhikari,S. and Balasubramanian,S. (2020) The structure and function of DNA G-quadruplexes. Trends Chem., 2, 123–136.

Kosiol,N., Juranek,S., Brossart,P., Heine,A. and Paeschke,K. (2021) G-quadruplexes: a promising target for cancer therapy. Mol. Cancer, 20, 40.

Ivens,E., Cominetti,M.M.D. and Searcey,M. (2022) Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg. Med. Chem., 69, 116897.

Lu,M., Guo,Q. and Kallenbach,N.R. (1992) Interaction of drugs with branched DNA structures. Crit. Rev. Biochem. Mol. Biol., 27, 157–190.

Marky,L.A., Kallenbach,N.R., McDonough,K.A., Seeman,N.C. and Breslauer,K.J. (1987) The melting behavior of a DNA junction structure: a calorimetric and spectroscopic study. Biopolymers, 26, 1621–1634.

Seeman,N.C., Chen,J.H. and Kallenbach,N.R. (1989) Gel electrophoretic analysis of DNA branched junctions. Electrophoresis, 10, 345–354.

Guo,Q., Seeman,N.C. and Kallenbach,N.R. (1989) Site-specific interaction of intercalating drugs with a branched DNA molecule. Biochem., 28, 2355–2359.

Churchill,M., Tullius,T.D., Kallenbach,N.R. and Seeman,N.C. (1988) A holliday recombination intermediate is twofold symmetric. Proc. Natl. Acad. Sci. U.S.A., 85, 4653–4656.

Lu,M., Guo,Q. and Kallenbach,N.R. (1993) Thermodynamics of G-tetraplex formation by telomeric DNAs. Biochem., 32, 598–601.

Lu,M., Guo,Q. and Kallenbach,N.R. (1992) Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Biochem., 31, 2455–2459.

Herna´ndez,L.I., Zhong,M., Courtney,S.H., Marky,L.A. and Kallenbach,N.R. (1994) Equilibrium analysis of ethidium binding to DNA containing base mismatches and branches. Biochem., 33, 13140–13146.

Lu,M., Guo,Q., Seeman,N.C. and Kallenbach,N.R. (1990) Drug binding by branched DNA: selective interaction of the dye stains-all with an immobile junction. Biochem., 29, 3407–3412.

Lu,M., Guo,Q., Pasternack,R.F., Wink,D.J., Seeman,N.C. and Kallenbach,N.R. (1990) Drug binding by branched DNA: selective interaction of tetrapyridyl porphyrins with an immobile junction. Biochem., 29, 1614–1624.

Guo,Q., Lu,M., Churchill,M., Tullius,T. and Kallenbach,N.R. (1990) Asymmetric structure of a three-arm DNA junction. Biochem., 29, 10927–10934.

Guo,Q., Lu,M., Marky,L.A. and Kallenbach,N.R. (1992) Interaction of the dye ethidium bromide with DNA containing guanine repeats. Biochem., 31, 2451–2455.

Liu,Y. and West,S.C. (2004) Happy hollidays: 40th anniversary of the holliday junction. Nat. Rev. Mol. Cell Biol., 5, 937–944.

Gall,J.G. (1954) Lampbrush chromosomes from oocyte nuclei of the newt. J. Morphol., 94, 283–351.

Cooper,J.P. and Hagerman,P.J. (1987) Gel electrophoretic analysis of the geometry of a DNA four-way junction. J. Mol. Biol., 198, 711–719.

Duckett,D.R., Murchie,A.I., Diekmann,S., von Kitzing,E., Kemper,B. and Lilley,D.M. (1988) The structure of the holliday junction, and its resolution. Cell, 55, 79–89.

Gough,G.W. and Lilley,D.M. (1985) DNA bending induced by cruciform formation. Nature, 313, 154–156.

Cooper,J.P. and Hagerman,P.J. (1990) Analysis of fluorescence energy transfer in duplex and branched DNA molecules. Biochem., 29, 9261–9268.

Murchie,A.I., Clegg,R.M., von Krtzing,E., Duckett,D.R., Diekmann,S. and Lilley,D.M. (1989) Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature, 341, 763–766

Pikkemaat,J.A., van den Elst,H., van Boom,J.H. and Altona,C. (1994) NMR studies and conformational analysis of a DNA four-way junction formed in a linear synthetic oligonucleotide. Biochem., 33, 14896–14907.

Potter,H. and Dressler,D. (1977) On the mechanism of genetic recombination: the maturation of recombination intermediates. Proc. Natl. Acad. Sci. U.S.A., 74, 4168–4172.

Mao,C., Sun,W. and Seeman,N.C. (1999) Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc., 121, 5437–5443.

Lilley,D.M. and Norman,D.G. (1999) The holliday junction is finally seen with crystal clarity. Nat. Struct. Biol., 6, 897–899.

Ortiz-Lombard´ıa,M., Gonza´lez,A., Eritja,R., Aymam´ı,J., Azor´ın,F. and Coll,M. (1999) Crystal structure of a DNA holliday junction. Nat. Struct. Biol., 6, 913–917.

Eichman,B.F., Vargason,J.M., Mooers,B.H. and Ho,P.S. (2000) The holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl. Acad. Sci. U.S.A., 97, 3971–3976.

Roe,S.M., Barlow,T., Brown,T., Oram,M., Keeley,A., Tsaneva,I.R. and Pearl,L.H. (1998) Crystal structure of an octameric ruva–Holliday junction complex. Mol. Cell, 2, 361–372.

Hargreaves,D., Rice,D.W., Sedelnikova,S.E., Artymiuk,P.J., Lloyd,R.G. and Rafferty,J.B. (1998) Crystal structure of e. coli RuvA with bound DNA holliday junction at 6 A˚ resolution. Nat. Struct. Biol., 5, 441–446.

Gopaul,D.N., Guo,F. and Van Duyne,G.D. (1998) Structure of the holliday junction intermediate in Cre–loxP site-specific recombination. EMBO J., 17, 4175–4187.

Lilley,D.M. (2017) Holliday junction-resolving enzymes––structures and mechanisms. FEBS Lett., 591, 1073–1082.

Hays,F.A., Teegarden,A., Jones,Z.J.R., Harms,M., Raup,D., Watson,J., Cavaliere,E. and Ho,P.S. (2005) How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc. Natl. Acad. Sci. U.S.A., 102, 7157–7162.

Eichman,B.F., Mooers,B.H.M., Alberti,M., Hearst,J.E. and Ho,P.S. (2001) The crystal structures of psoralen cross-linked DNAs: drug-dependent formation of holliday junctions. J. Mol. Biol., 308, 15–26.

Adams,A., Guss,J.M., Collyer,C.A., Denny,W.A. and Wakelin,L.P.G. (2000) A novel form of intercalation involving four DNA duplexes in an acridine-4-carboxamide complex of d(CGTACG)2. Nucleic Acids Res., 28, 4244–4253.

Thorpe,J.H., Hobbs,J.R., Todd,A.K., Denny,W.A., Charlton,P. and Cardin,C.J. (2000) Guanine specific binding at a DNA junction formed by d CG(5-BrU)ACG 2 with a topoisomerase poison in the presence of Co2+ ions. Biochem., 39, 15055–15061.

Teixeira,S.C.M., Thorpe,J.H., Todd,A.K., Powell,H.R., Adams,A., Wakelin,L.P.G., Denny,W.A. and Cardin,C.J. (2002) Structural characterisation of bisintercalation in higher-order DNA at a junction-like quadruplex. J. Mol. Biol., 323, 167–171.

Hopcroft,N.H., Brogden,A.L., Searcey,M. and Cardin,C.J. (2006) X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d (CGTACG) 2 molecules by a bis (9-aminoacridine-4-carboxamide) derivative. Nucleic Acids Res., 34, 6663–6672.

Singh,H., Singh,H., Sharma,S., Mohinder,P. and Bedi,S. (2015) Chemotherapeutic potential of acridine analogs: an ample review. Heterocycles, 91, 2043–2085.

Read,M., Harrison,R.J., Romagnoli,B., Tanious,F.A., Gowan,S.H., Reszka,A.P., Wilson,W.D., Kelland,L.R. and Neidle,S. (2001) Structure-based design of selective and potent g quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci. U.S.A., 98, 4844–4849.

Chien,C.-M., Wu,P.-C., Satange,R., Chang,C.-C., Lai,Z.-L., Hagler,L.D., Zimmerman,S.C. and Hou,M.-H. (2020) Structural basis for targeting T:T mismatch with triaminotriazine-acridine conjugate induces a U-Shaped Head-to-Head four-way junction in CTG repeat DNA. J. Am. Chem. Soc., 142, 11165–11172.

Herna´ndez,A.F., Parro´n,T., Tsatsakis,A.M., Requena,M., Alarco´n,R. and Lo´pez-Guarnido,O. (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology, 307, 136–145.

Xia,J., Mei,Q. and Rosenberg,S.M. (2019) Tools to live by: bacterial DNA structures illuminate cancer. Trends Genet., 35, 383–395.

Scully,R., Panday,A., Elango,R. and Willis,N.A. (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol., 20, 698–714.

Vos,M. (2009) Why do bacteria engage in homologous recombination? Trends Microbiol., 17, 226–232.

West,S.C. (2003) Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol., 4, 435–445.

Xia,J., Chen,L.-T., Mei,Q., Ma,C.-H., Halliday,J.A., Lin,H.-Y., Magnan,D., Pribis,J.P., Fitzgerald,D.M., Hamilton,H.M. et al. (2016) Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase. Sci. Adv., 2, e1601605.

Cassell,G.D. and Segall,A.M. (2003) Mechanism of inhibition of site-specific recombination by the holliday junction-trapping peptide WKHYNY: insights into phage h Integrase-mediated strand exchange. J. Mol. Biol., 327, 413–429.

Ghosh,K., Lau,C.K., Guo,F., Segall,A.M. and Van Duyne,G.D. (2005) Peptide trapping of the holliday junction intermediate in Cre-loxP Site-specific recombination *. J. Biol. Chem., 280, 8290–8299.

McGlynn,P. and Lloyd,R.G. (2001) Rescue of stalled replication forks by recg: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and holliday junction formation. Proc. Natl. Acad. Sci. U.S.A., 98, 8227–8234.

Kepple,K.V., Boldt,J.L. and Segall,A.M. (2005) Holliday junction-binding peptides inhibit distinct junction-processing enzymes. Proc. Natl. Acad. Sci. U.S.A., 102, 6867–6872.

Gunderson,C.W. and Segall,A.M. (2006) DNA repair, a novel antibacterial target: holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Mol. Microbiol., 59, 1129–1148.

Boldt,J.L., Pinilla,C. and Segall,A.M. (2004) Reversible inhibitors of h Integrase-mediated recombination efficiently trap holliday junction intermediates and form the basis of a novel assay for junction resolution*. J. Biol. Chem., 279, 3472–3483.

Rideout,M.C., Naili,I., Boldt,J.L., Flores-Fujimoto,A., Patra,S., Rostron,J.E. and Segall,A.M. (2013) wrwyrggrywrw is a single-chain functional analog of the holliday junction-binding homodimer,(wrwycr) 2. Peptides, 40, 112–122.

Kepple,K.V., Patel,N., Salamon,P. and Segall,A.M. (2008) Interactions between branched DNAs and peptide inhibitors of DNA repair. Nucleic Acids Res., 36, 5319.

Bolla,M.L., Azevedo,E.V., Smith,J.M., Taylor,R.E., Ranjit,D.K., Segall,A.M. and McAlpine,S.R. (2003) Novel antibiotics: macrocyclic peptides designed to trap holliday junctions. Org. Lett., 5, 109–112.

Pan,P.-S., Curtis,F.A., Carroll,C.L., Medina,I., Liotta,L.A., Sharples,G.J. and McAlpine,S.R. (2006) Novel antibiotics: C-2 symmetrical macrocycles inhibiting holliday junction DNA binding by E. coli RuvC. Bioorg. Med. Chem., 14, 4731–4739

Bonner,W.M., Redon,C.E., Dickey,J.S., Nakamura,A.J., Sedelnikova,O.A., Solier,S. and Pommier,Y. (2008) γ H2AX and cancer. Nat. Rev. Cancer, 8, 957.

Panier,S. and Boulton,S.J. (2014) Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol., 15, 7–18.

Apostolopoulos,V., Bojarska,J., Chai,T.-T., Elnagdy,S., Kaczmarek,K., Matsoukas,J., New,R., Parang,K., Lopez,O.P., Parhiz,H. et al. (2021) A global review on short peptides: frontiers and perspectives. Molecules, 26, 430.

Ranjit,D.K., Rideout,M.C., Nefzi,A., Ostresh,J.M., Pinilla,C. and Segall,A.M. (2010) Small molecule functional analogs of peptides that inhibit h site-specific recombination and bind holliday junctions. Bioorg. Med. Chem. Lett., 20, 4531–4534.

Rideout,M.C., Boldt,J.L., Vahi-Ferguson,G., Salamon,P., Nefzi,A., Ostresh,J.M., Giulianotti,M., Pinilla,C. and Segall,A.M. (2011) Potent antimicrobial small molecules screened as inhibitors of tyrosine recombinases and holliday junction-resolving enzymes. Mol. Diversity, 15, 989–1005.

Howell,L.A., Bowater,R.A., O’Connell,M.A., Reszka,A.P., Neidle,S. and Searcey,M. (2012) Synthesis of small molecules targeting multiple DNA structures using click chemistry. ChemMedChem, 7, 792–804.

Yin,Q., Liu,X., Hu,L., Song,Q., Liu,S., Huang,Q., Geng,Z., Zhu,Y., Li,X., Fu,F. et al. (2021) VE-822, a novel DNA holliday junction stabilizer, inhibits homologous recombination repair and triggers DNA damage response in osteogenic sarcomas. Biochem. Pharmacol., 193, 114767.

Kastenhuber,E.R. and Lowe,S.W. (2017) Putting p53 in context. Cell, 170, 1062–1078.

Maclaine,N.J. and Hupp,T.R. (2011) How phosphorylation controls p53. Cell Cycle, 10, 916–921.

Liu,Q., Turner,K.M., Yung,Alfred, Chen,W.K. and Zhang,W. (2014) Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro-Oncology, 16, 1313–1323.

Willmore,E., de Caux,S., Sunter,N.J., Tilby,M.J., Jackson,G.H., Austin,C.A. and Durkacz,B.W. (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood, 103, 4659–4665.

Kato,T., Sato,N., Hayama,S., Yamabuki,T., Ito,T., Miyamoto,M., Kondo,S., Nakamura,Y. and Daigo,Y. (2007) Activation of holliday junction–recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res., 67, 8544–8553.

Fokas,E., Prevo,R., Pollard,J.R., Reaper,P.M., Charlton,P.A., Cornelissen,B., Vallis,K.A., Hammond,E.M., Olcina,M.M., Gillies McKenna,W. et al. (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death. Dis., 3, e441.

O’Connor,M.J. (2015) Targeting the DNA damage response in cancer. Mol. Cell, 60, 547–560.

Pilie´,P.G., Tang,C., Mills,G.B. and Yap,T.A. (2019) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 16, 81–104.

Duskova,K., Lejault,P., Benchimol,E´ ., Guillot,R., Britton,S., Granzhan,A. and Monchaud,D. (2020) DNA junction ligands trigger DNA damage and are synthetic lethal with DNA repair inhibitors in cancer cells. J. Am. Chem. Soc., 142, 424–435.

Zell,J., Duskova,K., Chouh,L., Bossaert,M., Che´ron,N., Granzhan,A., Britton,S. and Monchaud,D. (2021) Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res., 49, 10275–10288.

Hall,C.E. and Cavalieri,L.F. (1961) Four-stranded DNA as determined by electron microscopy. J. Cell Biol., 10, 347–351.

Jensch,F. and Kemper,B. (1986) Endonuclease VII resolves.

Stojanovic,M.N. and Landry,D.W. (2002) Aptamer-based colorimetric probe for cocaine. J. Am. Chem. Soc., 124, 9678–9679.

Kato,T., Yano,K., Ikebukuro,K. and Karube,I. (2000) Interaction of three-way DNA junctions with steroids. Nucleic Acids Res., 28, 1963–1968.

Stojanovic´,M.N., Green,E.G., Semova,S., Nikic´,D.B. and Landry,D.W. (2003) Cross-reactive arrays based on three-way junctions. J. Am. Chem. Soc., 125, 6085–6089.

Oleksi,A., Blanco,A.G., Boer,R., Uso´n,I., Aymam´ı,J., Rodger,A., Hannon,M.J. and Coll,M. (2006) Molecular recognition of a three-way DNA junction by a metallosupramolecular helicate. Angew. Chem. Int. Ed., 45, 1227–1231.

Boer,D.R., Kerckhoffs,J.M., Parajo,Y., Pascu,M., Uso´n,I., Lincoln,P., Hannon,M.J. and Coll,M. (2010) Self-Assembly of functionalizable two-component 3D DNA arrays through the induced formation of DNA three-way-junction branch points by supramolecular cylinders. Angew. Chem. Int. Ed., 49, 2336–2339.

Malina,J., Hannon,M.J. and Brabec,V. (2007) Recognition of DNA three-way junctions by metallosupramolecular cylinders: gel electrophoresis studies. Chem. Eur. J., 13, 3871–3877.

Cerasino,L., Hannon,M.J. and Sletten,E. (2007) DNA three-way junction with a dinuclear iron (II) supramolecular helicate at the center: a NMR structural study. Inorg. Chem., 46, 6245–6251.

Cardo,L., Sadovnikova,V., Phongtongpasuk,S., Hodges,N.J. and Hannon,M.J. (2011) Arginine conjugates of metallo-supramolecular cylinders prescribe helicity and enhance DNA junction binding and cellular activity. Chem. Commun., 47, 6575–6577.

Gamba,I., Rama,G., Ortega-Carrasco,E., Mare´chal,J.-D., Mart´ınez-Costas,J., Va´zquez,M.E. and Lo´pez,M.V. (2014) Programmed stereoselective assembly of DNA-binding helical metallopeptides. Chem. Commun., 50, 11097–11100.

Go´mez-Gonza´lez,J., Pe´rez,Y., Sciortino,G., Roldan-Mart´ın,L., Mart´ınez-Costas,J., Mare´chal,J.-D., Alfonso,I., Va´zquez Lo´pez,M. and Va´zquez,M.E. (2021) Dynamic stereoselection of peptide helicates and their selective labeling of DNA replication foci in cells. Angew. Chem. Int. Ed., 60, 8859–8866.

Vuong,S., Stefan,L., Lejault,P., Rousselin,Y., Denat,F. and Monchaud,D. (2012) Identifying three-way DNA junction-specific small-molecules. Biochimie, 94, 442–450.

Novotna,J., Laguerre,A., Granzhan,A., Pirrotta,M., Teulade-Fichou,M.-P. and Monchaud,D. (2015) Cationic azacryptands as selective three-way DNA junction binding agents. Org. Biomol. Chem., 13, 215–222.

Stefan,L., Bertrand,B., Richard,P., Le Gendre,P., Denat,F., Picquet,M. and Monchaud,D. (2012) Assessing the differential affinity of small molecules for noncanonical DNA structures. ChemBioChem, 13, 1905–1912.

Barros,S.A. and Chenoweth,D.M. (2014) Recognition of nucleic acid junctions using triptycene-based molecules. Angew. Chem. Int. Ed., 53, 13746–13750.

Guyon,L., Pirrotta,M., Duskova,K., Granzhan,A., Teulade-Fichou,M.-P. and Monchaud,D. (2018) TWJ-Screen: an isothermal screening assay to assess ligand/DNA junction interactions in vitro. Nucleic Acids Res., 46, e16.

Duskova,K., Lamarche,J., Amor,S., Caron,C., Queyriaux,N., Gaschard,M., Penouilh,M.-J., de Robillard,G., Delmas,D., Devillers,C.H. et al. (2019) Identification of three-way DNA junction ligands through screening of chemical libraries and validation by complementary in vitro assays. J. Med. Chem., 62, 4456–4466.

Zhu,J., Haynes,C.J.E., Kieffer,M., Greenfield,J.L., Greenhalgh,R.D., Nitschke,J.R. and Keyser,U.F. (2019) FeII4L4 tetrahedron binds to nonpaired DNA bases. J. Am. Chem. Soc., 141, 11358–11362.

Yang,Z., Chen,Y., Li,G., Tian,Z., Zhao,L., Wu,X., Ma,Q., Liu,M. and Yang,P. (2018) Supramolecular recognition of three way junctions DNA by a cationic calix [3]carbazole. Chem. Eur. J., 24, 6087–6093.

Yu,H., Wang,X., Fu,M., Ren,J. and Qu,X. (2008) Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. Nucleic Acids Res., 36, 5695–5703.

Zhao,C., Geng,J., Feng,L., Ren,J. and Qu,X. (2011) Chiral metallo-supramolecular complexes selectively induce human telomeric G-Quadruplex formation under salt-deficient conditions. Chem. Eur. J., 17, 8209–8215.

Ducani,C., Leczkowska,A., Hodges,N.J. and Hannon,M.J. (2010) Noncovalent DNA-Binding metallo-supramolecular cylinders prevent DNA transactions in vitro. Angew. Chem. Int. Ed., 49, 8942–8945.

Go´mez-Gonza´lez,J., Mart´ınez-Castro,L., Tolosa-Barrilero,J., Alcalde-Ordo´n˜ez,A., Learte-Aymam´ı,S., Mascaren˜as,J.L., Garc´ıa-Mart´ınez,J.C., Mart´ınez-Costas,J., Mare´chal,J.-D. and Lo´pez,M.V. (2022) Selective recognition of A/T-rich DNA 3-way junctions with a three-fold symmetric tripeptide. Chem. Commun., 58, 7769–7772.

McLuckie,K.I.E., Di Antonio,M., Zecchini,H., Xian,J., Caldas,C., Krippendorff,B.F., Tannahill,D., Lowe,C. and Balasubramanian,S. (2013) G-Quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J. Am. Chem. Soc., 135, 9640–9643.

Wang,J.C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol., 3, 430–440.

Szlachta,K., Manukyan,A., Raimer,H.M., Singh,S., Salamon,A., Guo,W., Lobachev,K.S. and Wang,Y.-H. (2020) Topoisomerase II contributes to DNA secondary structure-mediated double-stranded breaks. Nucleic Acids Res., 48, 6654–6671.

Chardon,F., Japaridze,A., Witt,H., Velikovsky,L., Chakraborty,C., Wilhelm,T., Dumont,M., Yang,W., Kikuti,C. and Gangnard,S. (2022) CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Mol. Cell, 82, 1751–1767.

Can˜eque,T., Mu¨ ller,S. and Rodriguez,R. (2018) Visualizing biologically active small molecules in cells using click chemistry. Nat. Rev. Chem., 2, 202–215.

Williamson,J.R., Raghuraman,M. and Cech,T.R. (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell, 59, 871–880.

Sundquist,W.I. and Klug,A. (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature, 342, 825.

Sun,D.Y., Thompson,B., Cathers,B.E., Salazar,M., Kerwin,S.M., Trent,J.O., Jenkins,T.C., Neidle,S. and Hurley,L.H. (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 40, 2113–2116.

Wang,Y.-H., Yang,Q.-F., Lin,X., Chen,D., Wang,Z.-Y., Chen,B., Han,H.-Y., Chen,H.-D., Cai,K.-C., Li,Q. et al. (2021) G4LDB 2.2: a database for discovering and studying G-quadruplex and i-Motifligands. Nucleic Acids Res., 50, D150–D160.

De Cian,A., DeLemos,E., Mergny,J.-L., Teulade-Fichou,M.-P. and Monchaud,D. (2007) Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc., 129, 1856–1857.

Raguseo,F., Chowdhury,S., Minard,A. and Di Antonio,M. (2020) Chemical-biology approaches to probe DNA and RNA G-quadruplex structures in the genome. Chem. Commun., 56, 1317–1324.

Huppert,J.L. and Balasubramanian,S. (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res., 33, 2908–2916.

Bedrat,A., Lacroix,L. and Mergny,J.-L. (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res., 44, 1746–1759.

Goronzy, Isabel N., Quinodoz, Sofia A., Jachowicz, Joanna W., Ollikainen, Noah, Bhat, Prashant, Guttman, Mitchell. (2022)Simultaneous mapping of 3D structure and nascent RNAs argues against nuclear compartments that preclude transcription. Scopus,1-20.

Chargaff,E., Zamenhof,S. and Green,C. (1950) Human desoxypentose nucleic acid: composition of human desoxypentose nucleic acid. Nature, 165, 756–757.

Watson,J.D. and Crick,F.H. (1953) Molecular structure of nucleic acids. Nature, 171, 737–738.

Malyshev,D.A., Dhami,K., Lavergne,T., Chen,T., Dai,N.,6. Foster,J.M., Correˆa,I.R. and Romesberg,F.E. (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature, 509, 385–388.

Downloads

Published

29-12-2023

How to Cite

Basu, S. (2023). Attachment of Small Molecule with DNA and RNA. Inventum Biologicum: An International Journal of Biological Research, 3(4), 105–128. Retrieved from https://journals.worldbiologica.com/ib/article/view/129

Issue

Section

Review article