Protective Effects of β-carotene Against Sodium Dodecyl Sulfate Induced Stress in Male Swiss Albino Mice (Mus musculus)

A Multi-Index Study of Histopathological, Hematological, Cytogenetic and Biochemical Parameters

Authors

  • Biswadip Sanfui Molecular Cell Biology Lab, Department of Zoology, Maulana Azad College, 8, Rafi Ahmed Kidwai Road, Taltala, Kolkata, West Bengal-700013, India
  • Debasmita Ghosh Molecular Cell Biology Lab, Department of Zoology, Maulana Azad College, 8, Rafi Ahmed Kidwai Road, Taltala, Kolkata, West Bengal-700013, India
  • Sromon Dutta Molecular Cell Biology Lab, Department of Zoology, Maulana Azad College, 8, Rafi Ahmed Kidwai Road, Taltala, Kolkata, West Bengal-700013, India
  • Ritika Sarkar Molecular Cell Biology Lab, Department of Zoology, Maulana Azad College, 8, Rafi Ahmed Kidwai Road, Taltala, Kolkata, West Bengal-700013, India
  • Sandip Kumar Mandal Molecular Cell Biology Lab, Department of Zoology, Maulana Azad College, 8, Rafi Ahmed Kidwai Road, Taltala, Kolkata, West Bengal-700013, India
  • Sarmistha Banik Molecular Cell Biology Lab, Department of Zoology, Maulana Azad College, 8, Rafi Ahmed Kidwai Road, Taltala, Kolkata, West Bengal-700013, India
  • Sujit Kumar Bhowal Molecular Cell Biology Lab, Department of Zoology, Maulana Azad College, 8, Rafi Ahmed Kidwai Road, Taltala, Kolkata, West Bengal-700013, India

Keywords:

Sodium dodecyl sulphate, Cytotoxicity, β-carotene, Sperm head anomaly, ROS, Catalase activity, Micronuclei, Chromosome aberration, Mitotic index

Abstract

Sodium Dodecyl Sulfate (SDS) is a very common anionic surfactant, which is extensively used in daily life. SDS finds applications in the food industry, cosmetics industry and other healthcare products. Regular exposure to SDS in day-to-day life may be hazardous due to its potential cytotoxic nature. Hazardous effects can be seen when animals are exposed to it via oral and dermal routes. There have been four experimental groups, Gr. I (negative control), Gr. II (200mg/ Kg for 7 consecutive days β-carotene positive control), Gr. III (0.06 g/Kg body weight SDS control) and Gr. IV β-carotene for 7 consecutive days and then β-carotene for another 7 consecutive days along with SDS). It has been shown that organs like liver, pancreas and testis of animals of Gr. III are adversely affected and disruption of hepatocytes, pancreatic cells and testicular cells have been observed. SDS adversely affects haematological parameters by lowering haemoglobin level and erythrocyte count, and increasing leukocyte count. From the biochemical point of view SDS has been found to increase Reactive Oxygen Species (ROS), lower tissue protein content and catalase activity. In addition to testicular histopathological effects, SDS has lowered sperm count, sperm motility, and increased sperm head anomalies. Apart from these, the cytotoxicity of SDS is recorded concerning cell viability, mitotic index, micronuclei as well as chromosome aberrations. β-carotene has been known as a potent antioxidant and it might have some role on amelioration of the harmful effects of SDS. With this hypothesis and consideration, SDS-induced mice have been exposed to β-carotene (Gr. IV) to obtain the amelioration effect on toxicity that involve oxidative mechanisms. From the results of our investigation, it is evident that SDS causes wide ranging toxic effects on the health of male Swiss albino mice, affecting growth, organ function, blood profile, sperm quality, genetic integrity and oxidative balance. These adverse effects appear to be closely linked with oxidative stress and cellular damage. β-carotene, on the other hand, is able to reduce or prevent many of these SDS-induced effects. It may be thought that antioxidants like β-carotene might work in the pathway that neutralizes ROS generated by SDS exposure, thereby reducing oxidative stress, and preventing cellular damage.

Downloads

Download data is not yet available.

References

Agner, T. (1991). Susceptibility of atopic dermatitis patients to irritant dermatitis caused by sodium lauryl sulphate. Acta Dermato-Venereologica, 71(4), 296–300. https://doi.org/10.2340/0001555571296300

Arai, S., Caamaño, S., Strauss, S. H., & Orton, C. (2009). Does sodium dodecyl sulfate wash out of detergent-treated bovine pericardium at csssssssssytotoxic concentrations? The Journal of Heart Valve Disease, 18(1), 101–105.

Ashok, V. D., & De, S. K. (2011). Structure of the Sodium Dodecyl Sulfate Surfactant on a Solid Surface in Different NaCl Solutions. Langmuir, 27(43), 12422–12428. https://doi.org/10.1021/la900714a

Bendich, A., & Shapiro, S. S. (1986). Effect of β‑carotene and canthaxanthin on the immune responses of the rat. Journal of Nutrition, 116(10), 2254–2262.

Bidevkina, M. V., Golubeva, M. I., Limantsev, A. v., Razumnaya, I. N., Potapova, T. N., &Fedorova, E. A. (2020). Assessment of the toxicity and hazard of sodium lauryl sulfate at different exposure routes. Toxicological Review, 4. https://doi.org/10.36946/0869-7922-2020-4-56-59

Bossy-Wetzel, E., & Lipton, S. A. (2003). Nitric oxide signaling regulates mitochondrial number and function. Cell Death and Differentiation, 10(7). https://doi.org/10.1038/sj.cdd.4401244

Brevard, P. B. (1994). β‑Carotene increases monocyte numbers in peripheral rat blood. International Journal for Vitamin and Nutrition Research, 64(2), 104–108.

Chelikani, P., Fita, I., & Loewen, P. C. (2004). Diversity of structures and properties among catalases. In Cellular and Molecular Life Sciences (Vol. 61, Issue 2). https://doi.org/10.1007/s00018-003-3206-5

Chisté, R. C., Freitas, M., Mercadante, A. Z., & Fernandes, E. (2014). Carotenoids inhibit lipid peroxidation and hemoglobin oxidation, but not the depletion of glutathione induced by reactive oxygen species in human erythrocytes. Life Sciences, 99(1–2), 52–60.

Dayer, M. R., Moosavi‑Movahedi, A. A., Norouzi, P., Ghourchian, F., Hedayat‑Olah, H., & Safarian, S. (2002, July 31). Inhibition of human hemoglobin autoxidation by sodium n-dodecyl sulphate. BMB Reports, 35(4), 364–370.

Dhruv, D. (2023). The Study of Sodium Lauryl Sulfate (SLS) Toxicity. Journal of Clinical Toxicology, 13(4).

García-Casal, M. N., Layrisse, M., Solano, L., Barón, M. A., Arguello, F., Llovera, D., Ramírez, J., Leets, I., & Tropper, E. (1998). Vitamin A and β‑carotene can improve nonheme iron absorption from rice, wheat and corn by humans. The Journal of Nutrition, 128(3), 646–650.

Ghyasvand, T., Goodarzi, M. T., Amiri, I., Karimi, J., &Ghorbani, M. (2015). Serum levels of lycopene, beta-carotene, and retinol and their correlation with sperm DNA damage in normospermic and infertile men. International journal of reproductive biomedicine, 13(12), 787–792.

Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical biochemistry, 126(1), 131–138. https://doi.org/10.1016/0003-2697(82)90118-x

Gumpricht, E., Dahl, R., Devereaux, M. W., &Sokol, R. J. (2004). Beta-carotene prevents bile acid-induced cytotoxicity in the rat hepatocyte: Evidence for an antioxidant and anti-apoptotic role of beta-carotene in vitro. Pediatric research, 55(5), 814–821. https://doi.org/10.1203/01.PDR.0000117845.23762.6B

Hadwan, M. H. (2018). Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochemistry, 19(1). https://doi.org/10.1186/s12858-018-0097-5

Halestrap, A. P. (2009). Mitochondria and reperfusion injury of the heart-A holey death but not beyond salvation. In Journal of Bioenergetics and Biomembranes (Vol. 41, Issue 2). https://doi.org/10.1007/s10863-009-9206-x

Hiner, A. N., Hernández-Ruiz, J., Rodríguez-López, J. N., García-Cánovas, F., Brisset, N. C., Smith, A. T., Arnao, M. B., & Acosta, M. (2002). Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide. Catalase-like activity, compound III formation, and enzyme inactivation. The Journal of biological chemistry, 277(30), 26879–26885. https://doi.org/10.1074/jbc.M200002200

Irizarry Rovira, A. R., Hilbish, K. G., Schroeder, M., Boorman, G. A., Credille, K. M., Ballard, D., Hanson, J. C., &Niedenthal, A. (2021). Effects of 0.5% and 2.0% Sodium Lauryl Sulfate in Male CD-1 Mice From a 3-Month Oral Gavage Toxicity Study. Toxicologic pathology, 49(5), 1100–1108. https://doi.org/10.1177/01926233211004873

JossonAkkara, P., & Sabina, E. P. (2020). A biochemical approach to the anti-inflammatory, antioxidant and antiapoptotic potential of beta-carotene as a protective agent against bromobenzene-induced hepatotoxicity in female Wistar albino rats. Journal of applied biomedicine, 18(2-3), 87–95. https://doi.org/10.32725/jab.2020.011

Kheir-Eldin, A. A., Motawi, T. K., Gad, M. Z., & Abd-Elgawad, H. M. (2001). Protective effect of vitamin E, β-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. International Journal of Biochemistry and Cell Biology, 33(5). https://doi.org/10.1016/S1357-2725(01)00032-2

Kumar, S., Kirha, T. J., & Thonger, T. (2014). Toxicological effects of sodium dodecyl sulfate. Journal of Chemical and Pharmaceutical Research, 6(5).

Lawlor, S. M., &O’brien, N. M. (1995). Modulation of oxidative stress by β-carotene in chicken embryo fibroblasts. British Journal of Nutrition, 73(6). https://doi.org/10.1079/bjn19950089

Lin, W. T., Huang, C. C., Lin, T. J., Lin, M. T., & Chen, W. K. (2016). Enhanced protective effects of combined treatment with β‑carotene and curcumin against hyperthermic spermatogenic disorders in mice. BioMed Research International, 2016, 2572073.

LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L., & RANDALL, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 193(1), 265–275.

Michal, J. J., Heirman, L. R., Wong, T. S., Chew, B. P., Frigg, M., & Volker, L. (1994, May). Modulatory effects of dietary β‑carotene on blood and mammary leukocyte function in periparturient dairy cows. Journal of Dairy Science, 77(5), 1408–1421.

Moghimi, Y., Banaei, A., Majdaeen, M., Zamani, H., & Abedi-Firouzjah, R. (2021). Radiation protection and cytotoxicity effects of different concentrations of cerium oxide nanoparticles in aqueous solution combined with sodium dodecyl sulphate in Vero cells irradiated with 18 MV beams. International Journal of Radiation Research, 19(4), 913-920.

Muzandu, K., Ishizuka, M., Sakamoto, K. Q., Shaban, Z., el Bohi, K., Kazusaka, A., & Fujita, S. (2006). Effect of lycopene and β-carotene on peroxynitrite-mediated cellular modifications. Toxicology and Applied Pharmacology, 215(3). https://doi.org/10.1016/j.taap.2006.03.006

Nakagawa, K., Fujimoto, K., & Miyazawa, T. (1996). β‑Carotene as a high‑potency antioxidant to prevent the formation of phospholipid hydroperoxides in red blood cells of mice. Biochimica et Biophysica Acta, 1299(1), 110–116.

Niu, X., Zheng, S., Liu, H., & Li, S. (2018). Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Molecular medicine reports, 18(5), 4516–4522. https://doi.org/10.3892/mmr.2018.9465

Poli, A. L., Moreira, L. M., Tabak, M., & Imasato, H. (2006). SDS (sodium dodecyl sulfate) effect on the autoxidation of the Glossoscolex paulistus giant extracellular hemoglobin: Kinetic studies at pH 7.0 and 9.0. Colloids and Surfaces B: Biointerfaces, 52(1), 96–104.

Salehi, N., Moosavi-Movahedi, A. A., Fotouhi, L., Yousefinejad, S., Shourian, M., Hosseinzadeh, R., Sheibani, N., & Habibi‑Rezaei, M. (2014). Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin with sodium dodecyl sulfate. Journal of Photochemistry and Photobiology B: Biology, 133, 11–17.

Salvadori, D. M., Ribeiro, L. R., Oliveira, M. D., Pereira, C. A., &Beçak, W. (1992). The protective effect of beta-carotene on genotoxicity induced by cyclophosphamide. Mutation research, 265(2), 237–244. https://doi.org/10.1016/0027-5107(92)90052-4

Sandoval, C., Mella, L., Godoy, K., Hidalgo, J., & Vera, A. (2022). β‑Carotene increases activity of cytochrome P450 2E1 during ethanol consumption and improves hepatic oxidative balance. Antioxidants, 11(5), 1033.

Sandoval, C., Vera, A., Birditt, K., Godoy, K., Carmine, F., Caamaño, J., & Farías, J. (2024). β-Carotene Supplementation Improves Pancreas Function during Moderate Ethanol Consumption: Initial Characterization from a Morphological Overview. International journal of molecular sciences, 25(2), 1219. https://doi.org/10.3390/ijms25021219

Sarada, S. K., Dipti, P., Anju, B., Pauline, T., Kain, A. K., Sairam, M., Sharma, S. K., Ilavazhagan, G., Kumar, D., & Selvamurthy, W. (2002). Antioxidant effect of beta-carotene on hypoxia induced oxidative stress in male albino rats. Journal of ethnopharmacology, 79(2), 149–153. https://doi.org/10.1016/s0378-8741(01)00360-9

Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C., & Rabinovitch, P. S. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science (New York, N.Y.), 308(5730), 1909–1911. https://doi.org/10.1126/science.1106653

Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. In Molecular Cell (Vol. 48, Issue 2). https://doi.org/10.1016/j.molcel.2012.09.025

Siems, W. G., Sommerburg, O., Schild, L., Augustin, W., Langhans, C. D., &Wiswedel, I. (2002). Beta-carotene cleavage products induce oxidative stress in vitro by impairing mitochondrial respiration. Free Radical Biology and Medicine, 33(8), 1023–1032. https://doi.org/10.1016/s0891-5849(02)00902-6

Sokol, R. Z., Shulman, P., & Paulson, R. J. (2000). Comparison of two methods for the measurement of sperm concentration. Fertility and Sterility, 73(3). https://doi.org/10.1016/S0015-0282(99)00590-7

Stadtman, E. R., & Levine, R. L. (2000). Protein oxidation. Annals of the New York Academy of Sciences, 899, 191–208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x

Starkov, A. A. (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Annals of the New York Academy of Sciences, 1147, 37–52.https://doi.org/10.1196/annals.1427.015

Su, L., Fang, W., Zhao, X., Zhu, L., Gao, L., & Chen, G. (2022). Disruption of mitochondrial redox homeostasis as a mechanism of antimony-induced reactive oxygen species and cytotoxicity. Ecotoxicology and environmental safety, 237, 113519. https://doi.org/10.1016/j.ecoenv.2022.113519

Svegliati-Baroni, G., Saccomanno, S., van Goor, H., Jansen, P., Benedetti, A., &Moshage, H. (2001). Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver, 21(1), 1–12. https://doi.org/10.1034/j.1600-0676.2001.210101.x

Tayfur, S., Al-Bayti, A., & Al-Bayati, A. (2020). Histopathological effect of powder detergent on the livers of laboratory mice (Mus musculus). EAI Endorsed Transactions on Pervasive Health and Technology, 6(23), e1–e6.

Tennant, J. R. (1964). Evaluation of the trypan blue technique for determination of cell viability. Transplantation, 2(6), 685-694.

Ugwoke, A. N., Anyaeze, C. M., Eze, E. I., Ugwoke, I. O., & Ugwu, O. P. (2020). Toxicological effects of liquid detergent on reproductive organs of male albino rats. Journal of Men’s Health, 5(1), 15–20.

Umegaki, K., Takeuchi, N., Ikegami, S., & Ichikawa, T. (1994). Effect of β‐carotene on spontaneous and x‐ray‐induced chromosomal damage in bone marrow cells of mice.

Wang, J., Wang, J., Xu, C., Liu, R., & Chen, Y. (2016). Molecular mechanism of catalase activity change under sodium dodecyl sulfate‐induced oxidative stress in mouse primary hepatocytes. Journal of Hazardous Materials, 307, 173–183.

Wang, X., Wang, W., Pan, Y., Zhang, C., & Gao, J. (2020). Sodium taurocholate-induced severe acute pancreatitis in C57BL/6 mice. Journal of Visualized Experiments, (162), e61547.

Wyrobek, A. J., Watchmaker, G., & Gordon, L. (1984). An evaluation of sperm tests as indicators of germ-cell damage in men exposed to chemical or physical agents. Progress in clinical and biological research, 160, 385–405.

Yang, S. C., Huang, C. C., Chu, J. S., & Chen, J. R. (2004). Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats. British Journal of Nutrition, 92(2), 209-215.

Yang, W., & Acosta, D. (1995). A digitized fluorescence imaging study of intracellular Ca2+, pH, and mitochondrial function in primary cultures of rabbit corneal epithelial cells exposed to sodium dodecyl sulfate. In vitro cellular & developmental biology. Animal, 31(7), 499–507. https://doi.org/10.1007/BF02634027

Downloads

Published

21-11-2025

How to Cite

Sanfui, B., Ghosh, D., Dutta, S., Sarkar, R., Mandal, S. K., Banik, S., & Bhowal, S. K. (2025). Protective Effects of β-carotene Against Sodium Dodecyl Sulfate Induced Stress in Male Swiss Albino Mice (Mus musculus): A Multi-Index Study of Histopathological, Hematological, Cytogenetic and Biochemical Parameters. Inventum Biologicum: An International Journal of Biological Research, 5(4), 28–49. Retrieved from https://journals.worldbiologica.com/ib/article/view/197

Issue

Section

Research article