Chemistry and Anti-Cancer Potential of Benzotriazole (BT) Subordinates

Authors

  • Gargi Pal Assistant Professor, Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jaleswar, Balasore, Odisha, India-756032
  • Subhajit Makar Assistant Professor, Department of Pharm. Chem., Institute of Pharmaceutical Sciences, Jaleswar, Balasore, Odisha, India-756032
  • Pratap Chandra Pradhan Director, Mothers’ Group of Institution, Institute of Pharmaceutical Sciences, Jaleswar, Balasore, Odisha, India-756032
  • Dhirendra Nath Gan Assistant Professor, Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jaleswar, Balasore, Odisha, India-756032
  • Hemanta Kumar Khatua Assistant Professor, Department of Pharm. Chem., Institute of Pharmaceutical Sciences, Jaleswar, Balasore, Odisha, India-756032
  • Saroj Kumar Sethi Assistant Professor, Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jaleswar, Balasore, Odisha, India-756032
  • Ranjan Krushna Kumar Patra Assistant Professor, Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jaleswar, Balasore, Odisha, India-756032

Keywords:

Benzotriazole, Anti-Cancer, Synthetic, Chemistry, Drug development

Abstract

Benzotriazole is a bicyclic heterocyclic system consisting of three nitrogen atoms and fused benzene ring, shows wide range of biological and pharmacological activities. Benzotriazole can be synthesized using benzene-1,2-diamine, and carboxylic acid. Benzotriazole possess wide spectrum of biological activities like including anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antihypertensive, analgesic properties. The present reviews attempted to gather the various developments in chemistry, synthetic advancement, and anticancer activities of benzotriazole derivatives. This review is focused on defining the place of benzotriazole derivatives in biomedical research, highlighting their mode of action and Structure Activity Relationship (SAR) studies for anticancer drug development.

Downloads

Download data is not yet available.

References

Briguglio, I., Piras, S., Corona, P., Gavini, E., Nieddu, M., Boatto, G., & Carta, A. (2015). Benzotriazole: An overview on its versatile biological behavior. European Journal of Medicinal Chemistry, 97, 612-648.

A.P. Piccionello, A. Guarcello, Bioactive compounds containing benzoxadiazole, benzothiadiazole, benzotriazole, Curr. Bioact. Compd. 6 (2010) 266-283.

B.V. Suma, N.N. Natesh, V. Madhavan, Benzotriazole in medicinal chemistry: an overview, J. Chem. Pharm. Res. 3 (2011) 375-381.

A.R. Katritzky, S.A. Henderson, B. Yang, Applications of benzotriazole methodology in heterocycle ring synthesis and substituent introduction and modification, J. Heterocycl. Chem. 35 (1998) 1123-1159.

A.R. Katritzky, X. Lan, J.Z. Yang, O.V. Denisko, Properties and synthetic utility of N-substituted benzotriazoles, Chem. Rev. 98 (1998) 409-548.

Matin, M. M., Matin, P., Rahman, M. R., Ben Hadda, T., Almalki, F. A., Mahmud, S., ... & Alshehri, S. (2022). Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications. Frontiers in molecular biosciences, 9, 864286.

Guan, Q., Xing, S., Wang, L., Zhu, J., Guo, C., Xu, C., ... & Sun, H. (2024). Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application. Journal of Medicinal Chemistry, 67(10), 7788-7824.

Singh, N., Mahant, V., Bhasin, R., Verma, K., Kumar, A., & Vyas, A. (2024). Antimicrobial and Computational Studies of Newly Synthesized Benzotriazoles. Indian Journal of Microbiology, 1-8.

Wofford, D. S., Forkey, D. M., & Russell, J. G. (1982). Nitrogen-15 NMR spectroscopy: prototropic tautomerism of azoles. The Journal of Organic Chemistry, 47(26), 5132-5137.

Tomas, F., Abboud, J. L. M., Laynez, J., Notario, R., Santos, L., Nilsson, S. O., & Elguero, J. (1989). Tautomerism and aromaticity in 1, 2, 3-triazoles: the case of benzotriazole. Journal of the American Chemical Society, 111(19), 7348-7353.

Larina, L. I., & Milata, V. (2009). 1H, 13C and 15N NMR spectroscopy and tautomerism of nitrobenzotriazoles. Magnetic Resonance in Chemistry, 47(2), 142-148.

Monbaliu, J. C. M. (2016). The chemistry of benzotriazole derivatives. Springer Salman, HH (2019). Antimicrobial Evaluation of Some New Nitrone Compounds Derived from Glyoxal. International Journal of Green Pharmacy, 13(3), 275.

Monbaliu, J. C. M. (2016). The chemistry of benzotriazole derivatives. Springer Salman, HH (2019). Antimicrobial Evaluation of Some New Nitrone Compounds Derived from Glyoxal. International Journal of Green Pharmacy, 13(3), 275.

Loukopoulos, E., & Kostakis, G. E. (2019). Recent advances in the coordination chemistry of benzotriazole-based ligands. Coordination Chemistry Reviews, 395, 193-229.

Ladenburg, A. (1876). Derivate von Diaminen. Berichte der deutschen chemischen Gesellschaft, 9(1), 219-223.

Pereira, C. M., Stefani, H. A., Guzen, K. P., & Orfao, A. T. (2007). Improved synthesis of benzotriazoles and 1-acylbenzotriazoles by ultrasound irradiation. Letters in organic chemistry, 4(1), 43-46.

Panda, S. S., Hall, C. D., Scriven, E., & Katritzky, A. R. (2013). Aminoacyl benzotriazolides: versatile reagents for the preparation of peptides and their mimetics and conjugates. Aldrichimica Acta, 46(2), 43-58.

Katritzky, A. R., & Rachwal, S. (2010). Synthesis of heterocycles mediated by benzotriazole. 1. Monocyclic systems. Chemical reviews, 110(3), 1564-1610.

Khalafi A, Zare A, Parhami A, Soltani Rad MN and Nejabat GR. (2007). Highly regioselective N-alkylation of benzotriazole under solvent-free conditions, J. Iranian Chem. Soc, 4(3),271-278.

Namdeo KP, Singh VK and Prajapati SK. (2009). Synthesis of some 2-(substituted)-5-[(N-benzotriazolomethyl)- 1,3,4-thiadiazolyl]-4-thiazolidinones for their antifungal activity.Indian J. Pharma. Educ. Res, 43(3), 266-271.

Shi, F., Waldo, J. P., Chen, Y., & Larock, R. C. (2008). Benzyne click chemistry: synthesis of benzotriazoles from benzynes and azides. Organic letters, 10(12), 2409-2412.

Kumar, R. K., Ali, M. A., & Punniyamurthy, T. (2011). Pd-Catalyzed C− H Activation/C− N Bond Formation: A New Route to 1-Aryl-1 H-benzotriazoles. Organic letters, 13(8), 2102-2105.

Zhou, J., He, J., Wang, B., Yang, W., & Ren, H. (2011). 1, 7-Palladium migration via C− H activation, followed by intramolecular amination: regioselective synthesis of benzotriazoles. Journal of the American Chemical Society, 133(18), 6868-6870.

A cyclocondensation of 2-(aryl amino) aryl imino phosphoranes enables the synthesis of 1-aryl-1,2,3-benzotriazoles under mild conditions. The reaction involves a three-step, halogen-free route starting from simple nitroarenes and arylamines.

E. Łukasik, Z. Wróbel, Synlett, 2014, 25, 1987-1990.

Briguglio, I., Piras, S., Corona, P., Gavini, E., Nieddu, M., Boatto, G., & Carta, A. (2015). Benzotriazole: An overview on its versatile biological behavior. European Journal of Medicinal Chemistry, 97, 612-648.

Duncan JS, Gyenis L, Lenehan J, Bretner M, Graves LM, et al. (2008) An unbiased evaluation of CK2 inhibitors by chemoproteomics: characterization of inhibitor effects on CK2 and identification of novel inhibitor targets. Mol Cell Proteomics 7: 1077-1088.

Cheng X, Merz KH, Vatter S, Christ J, Wolfl S, et al. (2014) 7,7'-Diazaindirubin- -a small molecule inhibitor of casein kinase 2 in vitro and in cells. Bioorg Med Chem 22: 247-255.

Gyenis L, Turowec JP, Bretner M, Litchfield DW (2013) Chemical proteomics and functional proteomics strategies for protein kinase inhibitor validation and protein kinase substrate identification: applications to protein kinase CK2. Biochim Biophys Acta 1834: 1352-1358.

Huang, X., Cheng, C. C., Fischmann, T. O., Duca, J. S., Richards, M., Tadikonda, P. K., ... & Shipps Jr, G. W. (2013). Structure-based design and optimization of 2-aminothiazole-4-carboxamide as a new class of CHK1 inhibitors. Bioorganic & medicinal chemistry letters, 23(9), 2590-2594.

Fu J, Yang Y, Zhang XW, Mao WJ, Zhang ZM, et al. (2010) Discovery of 1H-benzo[d] [,2,3] triazol-1-yl 3,4,5-trimethoxybenzoate as a potential antiproliferative agent by inhibiting histone deacetylase. Bioorg. Med Chem 18: 8457-8462.

Zhang, S., Luo, Y., He, L. Q., Liu, Z. J., Jiang, A. Q., Yang, Y. H., & Zhu, H. L. (2013). Synthesis, biological evaluation, and molecular docking studies of novel 1, 3, 4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity. Bioorganic & medicinal chemistry, 21(13), 3723-3729.

Lokhande TN, Viswanathan CL, Juvekar AS (2008) Synthesis and evaluation of novel N-substituted-6-methoxynaphthalene-2-carboxamides as potential chemo sensitizing agents for cancer. Chem Pharm Bull (Tokyo) 56: 894-896.

Carta A, Briguglio I, Piras S, Boatto G, La Colla P, et al. (2011) 3-Aryl-2-[1Hbenzotriazol-1-yl] acrylonitriles: a novel class of potent tubulin inhibitors. Eur J Med Chem 46: 4151-4167.

Zhang, S. S., Zhang, H. Q., Li, D., Sun, L. H., Ma, C. P., Wang, W., ... & Qu, B. (2008). A novel benzotriazole derivative inhibits proliferation of human hepatocarcinoma cells by increasing oxidative stress concomitant mitochondrial damage. European journal of pharmacology, 584(1), 144-152.

Mermer, A., Bulbul, M. V., Kalender, S. M., Keskin, I., Tuzun, B., & Eyupoglu, O. E. (2022). Benzotriazole-oxadiazole hybrid Compounds: Synthesis, anticancer Activity, molecular docking and ADME profiling studies. Journal of Molecular Liquids, 359, 119264.

Li, Q., Liu, G., Wang, N., Yin, H., & Li, Z. (2020). Synthesis and anticancer activity of benzotriazole derivatives. Journal of Heterocyclic Chemistry, 57(3), 1220-1227.

Alraqa, S. Y., Alharbi, K., Aljuhani, A., Rezki, N., Aouad, M. R., & Ali, I. (2021). Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1, 2, 3-triazole molecular hybrids with different pharmacophores. Journal of Molecular Structure, 1225, 129192.

Kassab, A. E., & Hassan, R. A. (2018). Novel benzotriazole N-acylarylhydrazone hybrids: design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorganic chemistry, 80, 531-544.

Zoroddu, S., Sanna, L., Bordoni, V., Weidong, L., Gadau, S. D., Carta, A., ... & Bagella, L. (2024). Identification of 3-Aryl-1-benzotriazole-1-yl-acrylonitrile as a Microtubule-Targeting Agent (MTA) in Solid Tumors. International Journal of Molecular Sciences, 25(11), 5704.

Downloads

Published

14-09-2024

How to Cite

Pal, G., Makar, S., Pradhan, P. C., Gan, D. N., Khatua, H. K., Sethi, S. K., & Patra, R. K. K. (2024). Chemistry and Anti-Cancer Potential of Benzotriazole (BT) Subordinates. Inventum Biologicum: An International Journal of Biological Research, 4(3), 11–20. Retrieved from https://journals.worldbiologica.com/ib/article/view/75

Issue

Section

Review article