Exploring the Bioactive and Thermal Properties of Buckthorn Seed Oil
A Comprehensive Analysis
Keywords:
Buckthorn seed oil, GC/MS analysis, Antioxidant activity, Thermal propertiesAbstract
This study provides a detailed analysis of Buckthorn seed oil, examining its chemical composition, antioxidant properties, antimicrobial activity, and thermal stability before and after heating. GC/MS analysis identified significant components, including Tetracosane, 11-decyl- and Octadecane, 3-ethyl-5-(2-ethylbutyl)-, while new compounds such as Nonacosane and Pentacosane, 13-undecyl- emerged post-heating. The oil exhibited moderate antioxidant activity, with a radical scavenging activity (RSA) of 62%, which was lower than the synthetic standard, Propyl Gallate. Antimicrobial testing showed limited efficacy, with slight sensitivity against Staphylococcus aureus, and no observed activity against Escherichia coli or Candida albicans. DSC analysis indicated a melting point of 40°C and thermal stability up to 150°C, supporting its potential for industrial applications in cosmetics and food processing. Despite its favorable thermal stability and chemical profile, the oil's relatively low bioactivity suggests the need for further enhancement to increase its potential utility in broader applications.
Downloads
References
Assaggaf, H., El Hachlafi, N., El Fadili, M., Elbouzidi, A., Ouassou, H., Jeddi, M., ... & Mrabti, H. N. (2023). GC/MS profiling, in vitro antidiabetic efficacy of Origanum compactum Benth. essential oil and in silico molecular docking of its major bioactive compounds. Catalysts, 13(11), 1429.
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
Cai, Z., Li, K., Lee, W. J., Reaney, M. T., Zhang, N., & Wang, Y. (2021). Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review. Fundamental Research, 1(6), 767-784.
Guzmán, E., & Lucia, A. (2021). Essential oils and their individual components in cosmetic products. Cosmetics, 8(4), 114.
Gliszczynska-Swiglo, A., Sikorska, E., Khmelinskii, I., & Sikorski, M. (2007). Tocopherol content in edible plant oils. Polish Journal of Food and Nutrition Sciences, 57(4(A)), 157-161.
Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M., Diehl, B. W., ... & Tomás, M. C. (2011). Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition and Analysis, 24(2), 166-174.
Kostik, V., Memeti, S., & Bauer, B. (2013). Fatty acid composition of edible oils and fats. Journal of Hygienic Engineering and Design, 4, 112-116.
Li, T. S., Beveridge, T. H., & Drover, J. C. (2007). Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: Extraction and identification. Food Chemistry, 101(4), 1633-1639.
Lin, T. K., Zhong, L., & Santiago, J. L. (2017). Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. International Journal of Molecular Sciences, 19(1), 70.
Man, A., Santacroce, L., Iacob, R., Mare, A., & Man, L. (2019). Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens, 8(1), 15.
Mazhar, F., Jahangir, M., Abbasi, M. A., Ilyas, S. A., Khalid, F., Khanum, R., ... & Ajaib, M. (2013). Rhamnus triquetra: A valuable source of natural antioxidants to shield from oxidative stress. Asian Journal of Chemistry, 25(15).
Michalak, M., Błońska-Sikora, E., Dobros, N., Spałek, O., Zielińska, A., & Paradowska, K. (2024). Bioactive compounds, antioxidant properties, and cosmetic applications of selected cold-pressed plant oils from seeds. Cosmetics, 11(5), 153.
Murbach Teles Andrade, B. F., Nunes Barbosa, L., da Silva Probst, I., & Fernandes Júnior, A. (2014). Antimicrobial activity of essential oils. Journal of Essential Oil Research, 26(1), 34-40.
Nekkaa, A., Benaissa, A., Mutelet, F., & Canabady-Rochelle, L. (2021). Rhamnus alaternus plant: Extraction of bioactive fractions and evaluation of their pharmacological and phytochemical properties. Antioxidants, 10(02), 300.
Nigussie, G., Melak, H., & Annisa, M. E. (2021). Traditional medicinal uses, phytochemicals, and pharmacological activities of genus Rhamnus: A review. Journal of the Turkish Chemical Society Section A: Chemistry, 8(3), 899-932.
Pardauil, J. J., Souza, L. K., Molfetta, F. A., Zamian, J. R., Rocha Filho, G. N., & Da Costa, C. E. F. (2011). Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresource Technology, 102(10), 5873-5877.
Pastor, K., Ilić, M., Vujić, D., Jovanović, D., & Ačanski, M. (2020). Characterization of fatty acids in cereals and oilseeds from the Republic of Serbia by gas chromatography–mass spectrometry (GC/MS) with chemometrics. Analytical Letters, 53(8), 1177-1189.
Pavlačková, J., Kovacsová, K., Radiměřský, P., Egner, P., Sedlaříková, J., & Mokrejš, P. (2018). Stability and in vivo efficiency of natural cosmetic emulsion systems with the addition of vegetable oils. Brazilian Journal of Pharmaceutical Sciences, 54(03), e17693.
Salimon, J., Salih, N., & Yousif, E. (2012). Industrial development and applications of plant oils and their biobased oleochemicals. Arabian Journal of Chemistry, 5(2), 135-145.
Silva, L., Pinto, J., Carrola, J., & Paiva-Martins, F. (2010). Oxidative stability of olive oil after food processing and comparison with other vegetable oils. Food Chemistry, 121(4), 1177-1187.
Suanarunsawat, T., Ayutthaya, W. D. N., Songsak, T., Thirawarapan, S., & Poungshompoo, S. (2009). Antioxidant activity and lipid-lowering effect of essential oils extracted from Ocimum sanctum L. leaves in rats fed with a high cholesterol diet. Journal of Clinical Biochemistry and Nutrition, 46(1), 52-59.
Tan, C. P., & Che Man, Y. B. (2000). Differential scanning calorimetric analysis of edible oils: Comparison of thermal properties and chemical composition. Journal of the American Oil Chemists' Society, 77(2), 143-155.
Tan, C. P., Che Man, Y. B., Jinap, S., & Yusoff, M. S. A. (2001). Effects of microwave heating on changes in chemical and thermal properties of vegetable oils. Journal of the American Oil Chemists' Society, 78, 1227-1232.
Warner, K. (1999). Impact of high-temperature food processing on fats and oils. Impact of Processing on Food Safety, 67-77.
Yang, B., & Kallio, H. P. (2001). Fatty acid composition of lipids in sea buckthorn (Hippophaë rhamnoides L.) berries of different origins. Journal of Agricultural and Food Chemistry, 49(4), 1939-1947.
Yue, X. F., Shang, X., Zhang, Z. J., & Zhang, Y. N. (2017). Phytochemical composition and antibacterial activity of the essential oils from different parts of sea buckthorn (Hippophae rhamnoides L.). Journal of Food and Drug Analysis, 25(2), 327-332.
Rowland, R. G., Dong, J., & Migdal, C. A. (2017). Antioxidants. In Lubricant Additives (pp. 3-36). CRC Press.
Downloads
-
Download PDF
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Inventum Biologicum: An International Journal of Biological Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.