PGPR: A Plant Growth Enhancer in Sustainable Agriculture
Keywords:
PGPR, Crop production, Plant nutrition, Soil fertility, Sustainable agricultureAbstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that live in the rhizosphere of plants and play an important role in their growth and development. The importance of PGPR for long-term agricultural viability is discussed in this review. Some plant growth mechanisms are nitrogen fixation, phosphate solubilization, and hormone secretion. PGPR's potential benefits include increased plant tolerance to biotic and abiotic stress, reduced chemical fertilizers and pesticide usage, and improved nutrient availability, soil fertility, and absorption. PGPR has various ecological and practical purposes in the soil rhizosphere. PGPR plays a key function in agroecosystems by increasing the synthesis of phytohormones and metabolites, which directly affect plant growth. Phytopathogens can be stopped in their tracks, a plant's natural defenses strengthened, and so on. The PGPR performs a variety of tasks, including the synthesis of indole acetic acid (IAA), ammonia (NH3), hydrogen cyanide (HCN), and catalase. In addition to promoting nutrient uptake, PGPR regulates hormone production that boosts root size and strength. PGPR for sustainable agriculture offers numerous ecological and economic benefits, including increased crop production, reduced environmental pollution, and improved food security.
Downloads
References
Adesemoye, A.O.; Kloepper, J.W. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12.
Alori, E.T.; Dare, M.O.; Babalola, O.O. Microbial inoculants for soil quality and plant health. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2017; pp. 281–307.
Anand, K.; Kumari, B.; Mallick, M.A. Phosphate solubilizing microbes: An effective and alternative approach as bio-fertilizers. Int. J. Pharm. Sci. 2016, 8, 37–40.
Antar, M.; Gopal, P.; Msimbira, L.A.; Naamala, J.; Nazari, M.; Overbeek, W.; Backer, R.; Smith, D.L. Inter-organismal signaling in the rhizosphere. In Rhizosphere Biology: Interactions Between Microbes and Plants; Springer: Singapore, 2021; pp. 255–293.
Archana, D.; Nandish, M.; Savalagi, V.; Alagawadi, A. Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet-A Q. J. Life Sci. 2012, 9, 627–630.
Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 2010, 32, 1559–1570.
Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473.
Baharlouei, J.; Pazira, E.; Khavazi, K.; Solhi, M. Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium uptake by canola and barley. Int. Conf. Environ. Sci. Techol. 2011, 2, 28–32.
Bechtaoui, N.; Raklami, A.; Benidire, L.; Tahiri, A.-I.; Göttfert, M.; Oufdou, K. Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol. J. Environ. Stud. 2020, 29, 1557–1565.
Bevivino, A.; Sarrocco, S.; Dalmastri, C.; Tabacchioni, S.; Cantale, C.; Chiarini, L. Characterization of a free-living maize rhizosphere population of Burkholderia cepacia: Effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol. Ecol. 1998, 27, 225–237.
Bouchet, A.-S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed: A review. Agron. Sustain. Dev. 2016, 36, 38.
Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41.
Council, I.G. Five-Year Baseline Projections of Supply and Demand for Wheat, Maize (Corn), Rice and Soyabeans to 2023/24; International Grains Council: London, UK, 2019.
Czarnes, S.; Mercier, P.; Lemoine, D.G.; Hamzaoui, J.; Legendre, L. Impact of soil water content on maize responses to the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1. J. Agron. Crop. Sci. 2020, 206, 505–516.
Damam, M.; Kaloori, K.; Gaddam, B.; Kausar, R. Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int. J. Pharm. Sci. Rev. 2016, 37, 130–136.
De Andrade, L.A.; Santos, C.H.B.; Frezarin, E.T.; Sales, L.R.; Rigobelo, E.C. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms 2023, 11, 1088.
Edward Paice. By 2050, a Quarter of the World’s People Will Be African—This Will Shape Our Future. 2022. Available online: https://www.theguardian.com/global-development/2022/jan/20/by-2050-a-quarter-of-the-worlds-people-will-be african-this-will-shape-our-future (accessed on 20 January 2023).
Etesami, H.A.; Alikhani, H.A.; Akbari, A.A. Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl. Sci. J. 2009, 6, 15761584.
FAO. Human Vitamin and Mineral Requirements. Bangkok: Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2002.
FAOSTAT Food Balance Sheets. 2020. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 24 April 2020).
Fenta, L.; Assefa, F. Isolation and characterization of phosphate solubilizing bacteria from tomato rhizosphere and their effect on growth and phosphorus uptake of the host plant under greenhouse experiment. Int. J. Adv. Res. 2017, 3, 2320–5407.
Fouzia, A.; Allaoua, S.; Hafsa, C.; Mostefa, G. Plant growth promoting and antagonistic traits of indigenous fluorescent Pseudomonas spp. isolated from wheat rhizosphere and A. halimus endosphere. Eur. Sci. J. 2015, 11, 129–148.
Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2016, 2, 1127500.
Goteti, P.K.; Emmanuel, L.D.A.; Desai, S.; Shaik, M.H.A. Prospective Zinc Solubilising Bacteria for Enhanced Nutrient Uptake and Growth Promotion in Maize (Zea mays L.). Int. J. Microbiol. 2013, 2013, 869697.
Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596.
Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102.
Haggag, W.M.; Abouziena, H.F.; Abd-El-Kreem, F.; El Habbasha, S. Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J. Chem. Pharm. Res. 2015, 7, 882889.
Hassanisaadi, M.; Bonjar, G.H.S.; Hosseinipour, A.; Abdolshahi, R.; Barka, E.A.; Saadoun, I. Biological Control of Pythium aphanidermatum, the Causal Agent of Tomato Root Rotby Two Streptomyces Root Symbionts. Agronomy 2021, 11, 846.
He, Y.; Pantigoso, H.A.; Wu, Z.; Vivanco, J.M. Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J. Appl. Microbiol. 2019, 127, 196–207.
Hillel, D. Soil biodiversity. In Soil in the Environment; Hillel, D., Ed.; Academic Press: San Diego, CA, USA, 2008; pp. 163–174.
Kamran, S.; Shahid, I.; Baig, D.N.; Rizwan, M.; Malik, K.A.; Mehnaz, S. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Front. Microbiol. 2017, 8, 2593.
Khan, A.A.; Jilani, G.; Akhtar, M.S.; Naqvi, S.M.S.; Rasheed, M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009, 1, 48–58.
Khan, N.; Bano, A.; Rahman, M.A.; Guo, J.; Kang, Z.; Babar, M.A. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci. Rep. 2019, 9, 2097.
Khatoon, Z.; Huang, S.; Rafique, M.; Fakhar, A.; Kamran, M.A.; Santoyo, G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manag. 2020, 273, 111118.
Khoshru, B.; Mitra, D.; Khoshmanzar, E.; Myo, E.M.; Uniyal, N.; Mahakur, B.; Das Mohapatra, P.K.; Panneerselvam, P.; Boutaj, H.; Alizadeh, M.; et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: An economic valuable resource for the agriculture revival under stressful conditions. J. Plant Nutr. 2020, 43, 3062–3092.
Kloepper, J.W.; Schippers, B.; Bakker, P.A.H.M. Proposed elimination of the term endorhizosphere. Phytopathology 1992, 82, 726–727.
Kuan, K.B.; Othman, R.; Rahim, K.A.; Shamsuddin, Z.H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 2016, 11, e0152478.
Kumar, A.; Kumar, A.; Pratush, A. Molecular diversity and functional variability of environmental isolates of Bacillus species. SpringerPlus 2014, 3, 312.
Kumar, A.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Islam, M.T. Co-inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum aestivum L.) in the Alluvial Soil Under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017, 36, 608–617.
Kumar, H.; Bajpai, V.K.; Dubey, R.C. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak bybacterial combinations amended with chemical fertilizer. Crop Protect. 2010, 29, 591–598.
Lazarovits, G.; Nowak, J. Rhizobacteria for improvement of plant growth and establishment. HortScience 1997, 32, 188–192.
Lemessa, F.; Zeller, W. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol. Cont. 2007, 42, 336–344.
Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072.
Liu, X.M.; Feng, Z.B.; Zhang, F.D.; Zhang, S.Q.; He, X.S. Preparation and testing of cementing and coating nano subnanocomposites of slow/controlled-release fertilizer. Agric. Sci. China 2006, 5, 700–706.
Lopes, M.J.S.; Dias-Filho, M.B.; Gurgel, E.S.C. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Front. Sustain. Food Syst. 2021, 5, 606454.
Lyu, D.; Zajonc, J.; Pagé, A.; Tanney, C.A.; Shah, A.; Monjezi, N.; Msimbira, L.A.; Antar, M.; Nazari, M.; Backer, R.; et al. Plant holobiont theory: The phytomicrobiome plays a central role in evolution and success. Microorganisms 2021, 9, 675.
Mahmood, S.; Daur, I.; Al-Solaimani, S.G.; Ahmad, S.; Madkour, M.H.; Yasir, M.; Hirt, H.; Ali, S.; Ali, Z. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front. Plant Sci. 2016, 7, 876.
Miao, G.; Jianjiao, Z.; Entao, W.; Qian, C.; Jing, X.; Jianguang, S. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J. Integr. Agric. 2014, 14, 1855–1863.
Mohammadipanah, F.; Dehhaghi, M. Classification and Taxonomy of Actinobacteria. In Biology and Biotechnology of Actinobacteria; Springer: Berlin/Heidelberg, Germany, 2017; pp. 51–77.
Moura, R.T.D.A.; Garrido, M.D.S.; Sousa, C.D.S.; Menezes, R.S.C.; Sampaio, E.V.D.S.B. Comparison of methods to quantify soil microbial biomass carbon. Acta Sci. Agron. 2018, 40, 39451.
Nath, D.; Maurya, B.R.; Meena, V.S. Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal. Agric. Biotechnol. 2017, 10, 174181.
Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to waters tress. Front. Plant Sci. 2014, 5, 86.
Pareek, A.; Dhankher, O.P.; Foyer, C.H. Mitigating the Impact of Climate Change on Plant Productivity and Ecosystem Sustainability; Oxford University Press: Oxford, UK, 2020.
Parmar, P.; Sindhu, S.S. Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. J. Microbial. Res. 2013, 3, 25–31.
Pereira, P.; Ibàñez, F.; Rosenblueth, M.; Etcheverry, M.; Martínez-Romero, E. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecol. 2011, 10, 938546.
Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.; DelCerro, P.; Espuny, M.; Jiménez-Guerrero, I.; López-Baena, F.J.; Olero, F.J.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014, 169, 325–336.
Prajapati, K.; Sharma, M.; Modi, H.Growthpromotingeffect ofpotassium solubilizing microorganisms on Abelmoscus esculantus. Int. J. Agric. Sci. 2013, 3, 181–188.
Rezanka, T.; Palyzová, A.; Sigler, K. Isolation and identification of siderophores produced by cyanobacteria. Folia Microbiol. 2018, 63, 569–579.
Rosa, P.A.L.; Mortinho, E.S.; Jalal, A.; Galindo, F.S.; Buzetti, S.; Fernandes, G.C.; BarcoNeto, M.; Pavinato, P.S.; Teixeira Filho, M.; Carvalho, M. Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Front. Environ. Sci. 2020, 8, 32.
Sanlibaba, P.; Cakmak, G.A. Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol. 2016, 2, 1–5.
Santoro, M.V.; Bogino, P.C.; Nocelli, N.; Cappellari, L.R.; Giordano, W.F.; Banchio, E. Analysis of plant growth-promoting effects of fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front. Microbiol. 2016, 7, 198824.
Santos, R.M.; Kandasamy, S.; Rigobelo, E.C. Sugarcane growth and nutrition levels are differentially affected by the application of PGPR and cane waste. Microbiology open 2018, 7, e00617.
Saravanan, V.; Kumar, M.R.; Sa, T. Microbial zinc solubilization and their role on plants. In Bacteria in Agrobiology: Plant Nutrient Management; Maheshwari, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 47–63.
Setiawati, T.C.; Mutmainnah, L. Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric. Agric. Sci. Proc. 2016, 9, 108–117.
Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front. Sustain. Food Syst. 2021, 5, 667546.
Shanmugaiah, V.; Nithya, K.; Harikrishnan, H.; Jayaprakashvel, M.; Balasubramanian, N. Biocontrol mechanisms of siderophores against bacterial plant pathogens. Sustain. Approach. Control. Plant Pathog. Bact. 2015, 24, 167–190.
Spolaor, L.T.; Gonçalves, L.S.A.; Santos, O.J.A.P.D.; Oliveira, A.L.M.D.; Scapim, C.A.; Bertagna, F.A.B.; Kuki, M.C. Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia 2016, 75, 33–40.
Syers, J.; Johnston, A.; Curtin, D. Efficiency of soil and fertilizer phosphorus use. FAO Fertil. Plant Nutr. Bull. 2008, 18, 5–50.
Tian, F.; Ding, Y.; Zhu, H.; Yao, L.; Du, B. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Brazil. J. Microbiol. 2009, 40, 276–284.
Ulloa-Ogaz, A.L.; Munoz-Castellanos, L.N.; Nevarez-Moorillon, G.V. Biocontrol of phytopathogens: Antibiotic production as mechanism of control, the battle against microbial pathogens. In Basic Science, Technological Advance and Educational Programs 1; Mendez Vilas, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 305–309.
Umair Hassan, M.; Aamer, M.; UmerChattha, M.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The critical role of zinc in plants facing the drought stress. Agriculture 2020, 10, 396.
United Nations. 2019. Available online: https://www.un.org/development/desa/news/population/world-population prospects-2019.html (accessed on 10 June 2020).
Vacheron, J.; Desbrosses, G.; Bouffaud, M.-L.; Touraine, B.; Moënne-Loccoz, Y.; Muller, D.; Legendre, L.; Wisniewski-Dyé, F.; Prigent-Combaret, C. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013, 4, 356.
Vaid, S.K.; Kumar, B.; Sharma, A.; Shukla, A.; Srivastava, P. Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J. Soil Sci. Plant Nutr. 2014, 14, 889–910.
VanPeer, R.; Schippers, B. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can. J. Microbiol. 1989, 35, 456–463.
Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq, B.A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016, 21, 573.
Zhao, D.L.; Li, Y.R. Climate change and sugarcane production: Potential impact and mitigation strategies. Int. J. Agron. 2015, 2015, 1–10.
Zuo, Y.; Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 2011, 339, 83–95.
Downloads
-
Download PDF
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Inventum Biologicum: An International Journal of Biological Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.