A Comprehensive Review on Secondary Metabolite of Lichens

Authors

  • Chandranshu Bhushan Microbiology and Plant Pathology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj-211002, India https://orcid.org/0009-0000-8670-1438
  • Salman Khan Microbiology and Plant Pathology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj-211002, India https://orcid.org/0009-0001-8774-1180
  • Saumya Singh Microbiology and Plant Pathology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj-211002, India https://orcid.org/0009-0002-0408-0047
  • Ekta Singh Microbiology and Plant Pathology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj-211002, India https://orcid.org/0009-0000-0399-0044
  • Charvi Mishra Microbiology and Plant Pathology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj-211002, India https://orcid.org/0009-0009-4545-0607
  • Avinash Pratap Singh Microbiology and Plant Pathology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj-211002, India

Keywords:

Lichen, Secondary metabolite, Medicinal property, Antioxidant

Abstract

Unique organisms and lichen-forming fungi produce physiologically active compounds with a wide range of actions, including cytotoxic, antimycobacterial, antiviral, anti-inflammatory, analgesic, antipyretic, and antiproliferative properties. Nevertheless, very few lichen compounds have been examined for their biological and medicinal properties in medicine. This is undoubtedly a result of the challenges involved in species identification, bulk quantity collection, and isolation of pure chemicals for testing and structural determination. This involves synthesizing natural products or their derivatives for testing, extracting targeted chemicals, or using axenic cultures to produce new or authentic substances. Synthetic antioxidants that are often utilized are thought to have harmful and cancer-causing properties. As a result, there is an increasing interest in discovering novel natural resource antioxidants that are free of unwanted effects. Numerous in vitro investigations on plants, macromycetes, micro- and macroalgae, and lichens have provided compelling evidence that their antioxidant-capable elements can protect biological systems from oxidative stress. Because natural antioxidants have a preventive effect against oxidative stress and physiological dysfunction, their use is crucial. Lichens have piqued our interest in the search for novel natural antioxidant sources. Secondary metabolites, mainly phenols, which are well recognized for their antioxidant properties, are abundant in lichens.

Downloads

Download data is not yet available.

References

Ahmadjian, V. & Reynolds, J. T. (1961) Production of biologically active compounds by isolated lichenized fungi. Science 133, 700 –701.

Bhattarai, H. D., Paude, B., Lee, H. S. et al (2008a) Antioxidant activity of Sanionia uncinata, a polar mass species from King George Island, Antarctica. Phytother Res 22, 1635–1639.

Bhattarai, H. D., Paudel, B., Hong, S. G. et al (2008b) Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. J Nat Med 62, 481–484.

Brisdelli. F., Perilli. M., Sellitri. D. et al (2013) Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phytother Res 27, 431–437.

Buçukoglu, T. Z., Albayrak, S., Halici, M. G., & Tay, T. (2013). Antimicrobial and Antioxidant Activities of Extracts and Lichen Acids Obtained from Some U mbilicaria Species from C entral A natolia, T urkey. Journal of food processing and preservation, 37(6), 1103-1110.

Cain, B. F. (1961). Potential antitumour agents. Part I. Polyporic acid series. Journal of the Chemical Society Abstracts, 936 – 940.

Cain, B. F. (1966). Potential anti-tumour agents. Part IV. Polyporic acid series. Journal of the Chemical Society Section C, Organic, 1041 –1045.

Correche, E., Carrasco, M., Giannini, F., Piovano, M., Garbarino, J., & Enriz, D. (2002). Cytotoxic screening activity of secondary lichen metabolites. Acta Farmaceutica Bonaerense, 21(4), 273-278.

Correché, E. R., Enriz, R. D., Piovano, M., Garbarino, J., & Gómez-Lechón, M. J. (2004). Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Alternatives to Laboratory Animals, 32(6), 605-615.

Demleitner, S., Kraus, J. & Franz, G. (1991). Synthese und Antitumoraktivitat von Licheninderivaten. Pharmazie in unserer Zeit 20, 120.

Ernst-Russell, M. A., Elix, J. A., Chai C. L., Willis, A. C., Hamada, N. & Nash T. H. (1999). Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Letters 40, 6321– 6324.

Ernst-Russell, M. A., Elix, J. A., Chai, C. L., Hockless, D. C., Hurne, A. M., & Waring, P. (1999). Structure revision and cytotoxic activity of the scabrosin esters, epidithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Australian Journal of Chemistry, 52(4), 279-283.

Grube, M. & Blaha, J. (2003). On the phylogeny of some polyketide synthase genes in the lichenized genus Lecanora Mycological Research 107, 1419 – 1426.

Hidalgo, M. E., Ferna´ndez, E., Quilhot, W. et al (1994). Antioxidant activity of depsides and depsidones. Phytochemistry 37, 1585–1587.

Huneck. S., & Himmelreich, U. (1995). Arthogalin, a cyclic depsipeptide from the lichen Arthothelium galapagoense. Zeitschrift fu¨rNaturforschung, B. Chemical Sciences 50, 1101–1103

Hirabayashi. K., Iwata. S., Ito. M., Shigeta. S., Narui. T., Mori, T. & Shibata. S. (1989). Inhibitory effect of a lichen polysaccharide sulfate, GE-3-S, on the replication of human immunodeficiency virus (HIV) in vitro. Chemical and Pharmaceutical Bulletin 37, 2410–2412.

Hirayama, T., Fujikawa, F., Kasahara, T., Otsuka, M., Nishida, N. & Mizuno, D. (1980). Anti-tumor activities of some lichen products and their degradation products. Yakugaku Zasshi 100, 755 –759.

Ingolfsdottir. K., (2002). Molecules of interest: usnic acid. Phytochemistry 61, 729 –736.

Ingolfsdottir, K., Hjalmarsdottir, M. A., Guðjo´nsdo´ttir, G. A., Brynjolfsdo´ttir. A., Sigurðsson, A. & Steingrı´msson O´. (1997). In vitro susceptibility of Helicobacter pylori to protolichesterinic acid from Cetraria islandica. Antimicrobial Agents and Chemotherapy 41, 215– 217.

Keller, N. P. & Hohn, T. M. (1997). Metabolic pathway gene clusters infilamentous fungi. Fungal Genetics and Biology 21, 17– 21

Kosanić, M., Manojlović, N., Janković, S., Stanojković, T., & Ranković, B. (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food and chemical toxicology, 53, 112-118.

Kumar, S. & Muller, K. (1999). Lichen metabolites. I. Inhibitory action against leukotriene B4 biosynthesis by a non-redox mechanism. Journal of Natural Products 62. 817 – 820.

Lauterwein, M., Oethinger, M., Belsner, K., Peters, T. & Marre. R. (1995). In vitro activities of the lichen secondary metabolites vulpinic acid, (þ)-usnic acid and (2)-usnic acid against aerobic and anaerobic microorganisms. Antimicrobial Agents and Chemotherapy 39, 2541– 2543.

Lawrey, J. D. (1986). Biological role of lichen substances. The Bryologist 89,11– 122.

Lawrey, J.D. (1995) The chemical ecology of lichen mycoparasites. Canadian Journal of Botany 73(Suppl. 1) 603 – 608.

Lohézic-Le Dévéhat, F., Tomasi, S., Elix, J. A., Bernard, A., Rouaud, I., Uriac, P., & Boustie, J. (2007). Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. Journal of natural products, 70(7), 1218-1220.

Lutzoni, F., Pagel, M., & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411(6840), 937-940.

Matsubara, H., Miharu, K., Kinoshita, K., Koyama, K., Ye, Y., Takahashi, K., Yoshimura, I., Yamamoto, Y., Miura, Y. & Kinoshita, Y. (1998) Inhibitory effect of lichen metabolites and their synthetic analogs on melanin biosynthesis in cultured B-16 mouse melanoma cells. Natural Product Sciences 4, 161–169.

Miao, V., Coëffet-LeGal, M. F., Brown, D., Sinnemann, S., Donaldson, G., & Davies, J. (2001). Genetic approaches to harvesting lichen products. TRENDS in Biotechnology, 19(9), 349-355.

Müller, K. (2001). Pharmaceutically relevant metabolites from lichens. Applied microbiology and biotechnology, 56, 9-16.

Okuyama, E., Umeyama, K., Yamazaki, M., Kinoshita, Y., & Yamamoto, Y. (1995). Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta medica, 61(02), 113-115.

Papadopoulou, P., Tzakou, O., Vagias, C., Kefalas, P., & Roussis, V. (2007). β-Orcinol Metabolites from the Lichen Hypotrachyna revoluta. Molecules, 12(5), 997-1005.

Pengsuparp, T., Cai, L., Constant, H., Fong, H. H., Lin, L. Z., Kinghorn, A. D., Pezzuto, J. M., Cordell, G. A., Ingo´lfsdo´ttir, K., Wagner, H. & Hughes, S. H. (1995). Mechanistic evaluation of new plant-derived compounds that inhibits HIV-1 reverse transcriptase. Journal of Natural Products 58, 1024– 1031.

Rezanka, T., Temina, M., Hanus, L. & Dembitsky, V. M. (2004). The tornabeatins, four tetrahydro-2-furanone derivatives from the lichenized ascomycete Tornabea scutellifera (With.) J. R. Laundon. Phytochemistry 65, 2605– 2612.

Rezanka, T. & Dembitsky, V. (1999). Novel brominated lipidic compounds from lichens of central Asia. Phytochemistry 51, 963– 968.

Rezanka, T. & Gushina, I. A. (1999). Brominated depsidones from Acarospora gobiensis, a lichen of Central Asia. Journal of Natural Products 62, 1675– 1677.

Rikkinen. J., (1995). What’s behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4, 1–239.

Saklani, A., & Upreti, D. K., (1992) Folk uses of some lichens in Sikkim. Journal of Ethnopharmacology 27, 229 – 233.

Sankawa, U., Shibuya, M., Ebizuka, Y., Noguchi, H., Iitaka, Y., Endo, A., & Kitahara, N. (1982). Depside as potent inhibitor of prostaglandin biosynthesis: a new active site model for fatty acid cyclooxygenase. Prostaglandins, 24(1), 21-34.

Schmitt, I., Martin, M. P., Kautz, S., & Lumbsch H, T. (2005). Diversity and evolution of secondary metabolite encoding genes in the Pertusariaceae. Phytochemistry (in press).

Shahi, S. K., Shukla, A. C., Uperti, D. K., & Dikshit. A., (2000). Use of lichens as antifungal drugs against superficial fungal infections. Journal of Medicinal and Aromatic Plant Sciences 22(4A)/23(1A), 169 –172.

Shahi, S. K., Shukla, A. C., Dikshit, A. & Upreti, D. K., (2001). Broad spectrum antifungal properties of the lichen. Heterodermia leuocomela. Lichenologist 33, 177 – 179.

Shahi, S. K., Patra, M., Dikshit, A., & Upreti, D. K. (2003). Parmelia cirrhatum: a potential source of broad spectrum natural antifungal. Phytotherapy Research 17, 399 –400.

Sinnemann, S. J., Andrésson, Ó. S., Brown, D. W., & Miao, V. P. (2000). Cloning and heterologous expression of Solorina crocea pyrG. Current Genetics, 37, 333-338.

Stoll, A., Brack, A. & Renz, J. (1950). Die Wirkung von Flechtenstoffen auf Tuberkelbakterien und auf einige andere Mikroorganismen. Schweizer Zeitschrift fu¨r Allgemeine Pathologie und Bakteriologie 13, 729 –751

Stepanenko, L. S., Krivoshchekova, O. E., & Skirina, I. F., (2002). Functions of phenolic secondary metabolites in lichens from Far East Russia. Symbiosis (Philadelphia, PA), 32(2), 119-131.

Thadhani, V. M., Choudhary, M. I., Ali, S. et al (2011). Antioxidant activity of some lichen metabolites. Nat Prod Res 25, 1827–1837.

Wood, S., Huffman, J., Weber, N., Andersen, D., North, J., Murray, B., Sidwell, R. & Hughes, B. (1990). Antiviral activity of naturally occurring anthraquinones and anthraquinone derivatives. Planta Medica 56, 651 – 652.

Yamamoto, Y., (2000). Screening of biological activities and isolation of biological-active compounds from lichens. Shokubutsu no Kagaku Chosetu 35, 169 –179.

Yamamoto, Y., Miura, Y., Kinoshita, Y., Higuchi, M., Yamada, Y., Murakami, A., Ohigashi, H. & Koshimizu, K. (1995). Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoterinduced Epstein-Barr virus activation. Chemical and Pharmaceutical Bulletin 43, 1388 –1390.

Downloads

Published

09-03-2025

How to Cite

Bhushan, C., Khan, S., Singh, S., Singh, E., Mishra, C., & Singh, A. P. (2025). A Comprehensive Review on Secondary Metabolite of Lichens. Inventum Biologicum: An International Journal of Biological Research, 5(1), 36–42. Retrieved from https://journals.worldbiologica.com/ib/article/view/164

Issue

Section

Review article

Most read articles by the same author(s)