Acute Toxicity of Potassium Sulphate in Amami Rabbit (Pentalagus furnessi) with Reference to Biochemical Attributes
Keywords:
Serum, Biochemical alteration, Potassium sulfate, Rabbit, PentalagusAbstract
The aim of present study was to see how acute potassium sulphate toxicity affected Amami rabbit biochemical parameters. Protein and cholesterol levels in rabbits treated with potassium sulphate decreased, while creatinine and bilirubin levels increased. Protein (-5.5 to -20.0 percent), cholesterol (-6.7 to -13.3 percent), creatinine (8.3 to 16.6 percent), and bilirubin (2.2 to 6.7 percent) were also measured during the exposure period. The findings point to a change in blood serum biochemicals as a result of potassium sulphate exposure. These metrics are important indications of a live organism's health and stress.
Downloads
References
Adrogué, H. J., & Madias, N. E. (1981). Changes in plasma potassium concentration during acute acid-base disturbances. American Journal of Medicine, 71(3), 456–467. https://doi.org/10.1016/0002-9343(81)90182-0
Blum, D. C., Canaon, S., & Winketman, J. W. (1985). Clinical chemistry (p. 1050) (2nd ed). Harper & Row Publishing.
Eaton, D. L., & Klassen, C. D. (1996). Principles of toxicology. In Klaseen (Ed.), Toxicology. The basic science of poison.
Horai, S., Minagawa, M., Ozaki, H., Watanabe, I., Takeda, Y., Yamada, K., Ando, T., Akiba, S., Abe, S., & Kuno, K. (2006). Accumulation of Hg and other heavy metals in the Javan mongoose (Herpestes javanicus) captured on Amamioshima Island, Japan. Chemosphere, 65(4), 657–665. https://doi.org/10.1016/j.chemosphere.2006.01.078
Kokka, N., & George, R. (1970). Effect of hypothalamic stimulation on blood glucose in the rabbit. Neuroendocrinology, 6(1), 1-9.
Kubo, M., Nakashima, T., Honda, T., Kochi, Y., Ito, Y., Hattori, S., & Kuraishi, T. (2013). Histopathological examination of spontaneous lesions in Amami rabbits (Pentalagus furnessi): A preliminary study using formalin-fixed archival specimens. Japanese Journal of Zoo and Wildlife Medicine, 18(2), 65–70. https://doi.org/10.5686/jjzwm.18.65
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Malik J. A., Iqbal S., Biswas J., Riaz U., & Datta S. (2021). Antidiabetic Property of Aloe vera (Aloe barbadensis) and Bitter Melon (Momordica charantia). In Aftab T., Hakeem K.R. (eds) Medicinal and Aromatic Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_10
Newman, T. B., Easterling, M. J., Goldman, E. S., & Stevenson, D. K. (1990). Laboratory evaluation of jaundice in newborns. Frequency, cost, and yield. American Journal of Diseases of Children, 144(3), 364–368. https://doi.org/10.1001/archpedi.1990.02150270114039
Ohnishi, N., Kobayashi, S., Nagata, J., & Yamada, F. (2017). The influence of invasive mongoose on the genetic structure of the endangered Amami rabbit populations. Ecological Research, 32(5), 735–741. https://doi.org/10.1007/s11284-017-1489-5
Osar, B. L. (1965). Hawk’s practical physiological chemistry (14th ed) N. Y. McGrow-Hill (Ed.), 1214.
Panda, B. K., Praharaj, N. K., Johri, T. S., & Sah, R. L. (1987). Experimental aflatoxicosis in Japanese quails: Evidence of some biochemical changes. Indian J. Poult. Sci, 22, 359-362.
Rajamannar, K., & Manohar, L. (1998). Effect of pesticides on oxygen consumption of the fish Labeo rohita. Journal of Ecobiology, 10(3), 205-208.
Ramalingam, K. (1982). Effects of sublethal levels of DDT, malathion and mercury on tissue proteins of Sarotherodon mossambicus (Peters). Proceedings: Animal Sciences, 91(6), 501-505.
Ramalingam, V., Panneerdoss, S., Girija, M., & Ilango, S. (2001). Mercuric chloride induced changes in the histology of the testis and serum testosterone in adult albino rats. Pollution Research, 20(3), 439-442.
Rao, C. S., Chakrasali, R. T., Ila, H., & Junjappa, H. (1990). Regio-and chemoselective conjugate 1, 4-reduction of α-oxoketene dithioacetals with sodium borohydride and sodium cyanoborohydride. Tetrahedron, 46(6), 2195-2204.
Rekha, R., Gautam, R. K., Kalpana, G., & Suneel, K. (2008). Nuvan intoxication leads protein alteration in kidney of Labeo rohita. Journal of Experimental Zoology, India, 11(1), 113-115.
Shakoori, A. R., Zaheer, S. A., & Ahmed, M. S. (1976). Effect of malathion, dieldrin, and endrin on blood serum protein and free amino acid pool of Channa punctatus (bloch). Pak. J. Zool, 8(2), 125-134.
Sharma, S., Sharma, A., Singh, P. K., Soni, P., Sharma, S., Sharma, P., & Sharma, K. P. (2007). Impact of distillery soil leachate on haematology of Swiss albino mice (Mus musculus). Bulletin of Environmental Contamination and Toxicology, 79(3), 273–277. https://doi.org/10.1007/s00128-007-9225-4
Verley, H. (1969). Practical clinical biochemistry (p. 1277) (5th ed). ELBS London.
Yeragi, S. G., Koli, V. A., & Yeragi, S. (2000). Effect of pesticide malathion on protein metabolism of the marine crab Uca marionis. Journal of Ecotoxicology & Environmental Monitoring, 10(1), 59-62.
Zlatkis, A., Zak, B., & Boyle, A. J. (1953). A new method for the direct determination of serum cholesterol. Journal of Laboratory and Clinical Medicine, 41(3), 486–492.
Downloads
-
Download PDF
Abstract Views: 82,
Download PDF: 32
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Inventum Biologicum: An International Journal of Biological Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.